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Abstract: 

The identification of cellular targets that can be exploited for therapeutic benefit, broadly known as target ID, re-
mains a fundamental goal in drug discovery. In recent years, the application of new chemical and biological tech-
nologies that accelerate target ID has become commonplace within drug discovery programs, as a complete under-
standing of how molecules react in a cellular environment can lead to increased binding selectivity, improved safety 
profiles, and clinical efficacy. Established approaches using photoaffinity labelling (PAL) are often costly and time-
consuming due to poor signal-to-noise coupled with extensive probe optimization. Such challenges are exacerbated 
when dealing with low abundance membrane proteins or multiple protein target engagement, typically rendering 
target ID unfeasible. Herein, we describe a general platform for photocatalytic small molecule target ID, which 
hinges upon the generation of high-energy carbene intermediates via visible light-mediated Dexter energy transfer. 
By decoupling the reactive warhead from the drug, catalytic signal amplification results in multiple labelling events 
per drug, leading to unprecedented levels of target enrichment. Through the development of cell permeable photo-
catalyst conjugates, this method has enabled the quantitative target and off target identification of several drugs 
including (+)-JQ1, paclitaxel, and dasatinib. Moreover, this methodology has led to the target ID of two GPCRs – 
ADORA2A and GPR40 – a class of drug target seldom successfully uncovered in small molecule PAL campaigns.  
 
Main text: 
The identification of biological targets and understanding of their interactions at the molecular level (target ID) is 
essential for the successful design of new therapeutic candidates and their progression into the clinic1,2. In recent 
years however, the intrinsic challenges associated with fully characterizing drug targets has manifested in low suc-
cess rates and lengthy timelines, resulting in an industry-wide bottleneck within the developmental pipeline3,4. 
Therefore, the development of new methods to elucidate small molecule targets has the potential to significantly 
increase the success of therapeutic target selections, which should in turn lead to a reduction in clinical attrition and 
ultimately patient morbidity (Scheme 1a)1,5,6. 
 Over the last two decades, technological advancements in the fields of mass spectrometry7, chemical genet-
ics8, and bioinformatics9 have transformed drug target identification leading to improvements in our understanding 
of biological pathways and cellular signalling2,10. However, while this information has provided a more focused 
route to the complex process of drug discovery, there remains a demand for target identification technologies for 
proteins without a well-described mechanism-of-action11. To address this need, affinity-based approaches12, and 
photoaffinity labelling (PAL) in particular, have now become routinely used tools in drug discovery (Scheme 1a)13. 
PAL works by the incorporation of a stoichiometric photoactivatable group, such as a diazirine, and an affinity 
handle, such as biotin, into the small-molecule architecture14. Following UV-activation and affinity-based enrich-
ment, immunoblotting and proteomic analysis can be used to gather information regarding the identity of the target 
protein15.  
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While these methods have been extremely empowering for a number of protein classes16–18, practically they 
remain capricious and typically struggle to determine the complete interactome due to low receptor and protein 
abundance and short half-lives, leading to low cross-linking yields and high background15,19. The use of diazirine-
based probes in particular has been challenging in this context as >99% of the carbenes generated upon UV irradi-
ation react with water and not the target20. These spent probes serve to further block the binding of unreacted mol-
ecules, further hampering labelling efficiency. As a result, costly and time-consuming structural optimization cam-
paigns are often required to overcome these shortfalls.  

Indeed, the inherent difficulties associated with PAL have inspired the development of several elegant methods 
that hinge upon the use of stoichiometric activated electrophiles12,21–24, single-electron transfer events25, or specific 
oxidizable residues26 to identify target proteins. However, many of these technologies are limited to a single label-
ling event per drug molecule, often require extensive structural optimization (linker length and composition), and 

 
 
Scheme 1. Photoaffinity labelling comprises a critical component of small molecule target ID. a, Target ID campaigns are critical for the development 
of successful drugs, though often rely on challenging photoaffinity labelling campaigns that employ the stoichiometric activation of diazirine small-
molecule conjugates with UV light. b, Our approach separates the warhead from the small molecule probe, instead employing the photocatalytic activation 
of diazirines using visible light, giving rise to significant signal enhancement. c, Development of cell-penetrating, generation 2 photocatalyst suitable for 
small-molecule conjugation and target ID. d, Cell permeability of Ir-photocatalysts determined by halotag chaser assay; photocatalyst PEG-hexyl chloride 
conjugate and TAMRA hexyl chloride incubated with HEK293T cells expressing TOM20-halotag. Western blot analysis and immunostaining TOM20 
with anti-TAMRA reveals off-compete only in the presence of Ir-G2 catalyst.  
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require low-yielding downstream ‘click’ processing19. Moreover, intracellular labelling technologies are often ham-
pered by low cell-permeability leading to high background signal5. We therefore reasoned that the development of 
a catalytic target ID technology that separated the drug molecule from the reactive warhead could overcome these 
challenges through multiple labelling events leading to signal amplification (Scheme 1b).  

We recently disclosed a novel antibody-based proximity labelling platform for cell surface microenvironment 
elucidation, termed µMap27. This method relies upon the activation of diazirine molecules in close proximity to a 
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set of photocatalysts appended to an antibody via Dexter energy transfer. Inspired by this unique activation mode, 
we questioned whether such a tactic could be leveraged for small molecule target ID through the incorporation of a 
photocatalyst onto a bioactive small molecule. However, at the outset of the investigation, we were cognizant of 
several challenges inherent in developing such a technology, such as catalyst cell permeability and biocompatibility, 
ease of chemical manipulation, retention of biological activity, and labelling efficiency (given each antibody con-
tained an average of 6–8 photocatalysts). However, we reasoned that by ‘switching on’ catalysis through visible 
light activation, labelling could be controlled both spatially and temporally, bypassing intrinsic reactivity problems 
and enabling the identification of novel targets across numerous drug discovery programs. 

We began by investigating cell permeability: employing a halotag-based chaser assay off-competing a TAMRA 
dye in HEK293T cells, we identified that our previous catalyst design (Gen 1) was impermeable by virtue of its 
neutral net charge and two carboxylic acid residues (Scheme 1d). Through screening different photocatalyst struc-
tures, we realized that Ir-catalysts containing both the dFCF3-phenyl pyridine moiety and 4,4-dialkyl bpy ligand 
were crucial in achieving the necessary triplet energy27. Pleasingly, by removing the carboxylic acid groups, the 
cationic photocatalyst (Gen 2) was rendered cell permeable (Scheme 1d). With this in mind, we evaluated conjuga-
tion handles based around the 4,4-dMebpy ligand, opting for a distal carboxylic acid to enable facile amide coupling. 
Importantly, our G2-iridium catalyst can be accessed on gram-scale and be readily conjugated to a range of linkers 
and complex small molecules (vide infra). 

Confident in our ability to access almost any Ir-drug conjugate, we initiated our target ID campaign with the 
validated epigenetic tool compound (+)-JQ128. A potent inhibitor of the BET family of bromodomain proteins 
(BRD2/3/4), several JQ1 structural analogues are in clinical trials for a variety of cancers including NUT midline 
carcinoma29. We prepared the corresponding (+)-JQ1-G2 conjugate (1) (Scheme 2) and validated target engagement 
in vitro with recombinant BRD4 in a competition assay vs. bovine carbonic anhydrase (CA). An equimolar amount 
of CA and BRD4 was treated with (+)-JQ1-G2 probe (1) and an excess of diazirine-PEG3-biotin prior to irradiation 
at 450 nm. Labelling intensity was measured by western blotting with a streptavidin stain. Pleasingly, these prelim-
inary experiments revealed a 20-fold increase in labelling for BRD4 vs. CA compared to the unconjugated (free) 
photocatalyst (Scheme 2a). Importantly, the (–)-JQ1-G2 conjugate, which is known to not bind BRD428, showed 
significantly reduced labelling, demonstrating that labelling is as a result of a ligand/protein binding event (Scheme 
2c, A). In addition, we were able to confirm this through microscale thermophoresis (MST), where the addition of 
the Ir-catalyst made only a minor impact on the binding constant (Figure S1). 

Based on these results, we sought to apply this method to live cells. We treated HeLa cells with 5 µM (+)-JQ1-
Gen 2 (1) for 3h before the addition of 250 µM Dz-PEG3-Biotin and subsequent 15 min irradiation (450 nm). 
Following lysis and streptavidin-bead enrichment, western blot analysis with anti-BRD4 showed a clear labelling 
of the target protein compared to DMSO control (Figure S2). In line with previous findings, the corresponding (+)-
JQ1-Gen 1 catalyst, while demonstrating similar in vitro labelling capability, showed no such enrichment of the 
target protein in cells (Scheme 2b). Consistent with our hypothesis, the intensity of labelling was found to be linearly 
related to irradiation time, demonstrating the photocatalytic signal amplification and temporal control offered by 
the µMap platform (Scheme 2c). This was also observable by confocal microscopy, wherein the degree of biotinyl-
ation imparted by increased significantly over time (Figure S3). Encouraged by our western blot validation data, 
we moved to TMT-based quantitative chemoproteomics in order to more completely assess the interactome of (+)-
JQ1. To our delight, by comparing the labelling by (+)-JQ1-Gen 2 (1) vs. unconjugated (free) photocatalyst in HeLa 
cells, we observed several BRD proteins as the most enriched, although the precise identity of which however 
remains difficult to ascertain due to structural homology (Scheme 2d). We also identified two previously annotated 
(+)-JQ1 off-targets, HADHA30 and SRRM231. ALCAM (CD166), a transmembrane glycoprotein, was also identi-
fied as being significantly enriched, but currently has no reported interaction with (+)-JQ1. CD166 exerts a pro-
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carcinogenic role via the inhibition of transcription factors along the FOXO/AKT axis and is considered a novel 
therapeutic target for liver cancer32. Interestingly, BET inhibition by (+)-JQ1 has been shown to upregulate expres-
sion of FOXO1, although the mechanism remains unclear33. In order to evaluate whether protein enrichment was 
as a direct result of labelling or up-regulation by virtue of the presence of (+)-JQ1, we repeated the experiment with 

 
 
Scheme 3. Intracellular photocatalytic target ID and interactome mapping of dasatinib and paclitaxel. a, Enrichment of p38 by western blot for labelling using 
desHEP-dasatinib-PEG5-G2 labelling in THP1 cells. b, Label free proteomic analysis in THP1 cells comparing intracellular labelling by desHEP-dasatinib-PEG5-G2 
catalyst vs. Ir-G2-NHEt reveals enrichment of several kinases (red), as well as lysosomal proteins (green) and off-targets (blue). c, Kinase activity assays reveals 
dasatinib-G2 retains inhibition activity against Abl and p38, as well as general tyrosine phosphorylation, in K562 cells. d, TMT-based quantitative chemoproteomic 
analysis in K562 cells comparing intracellular labelling by dasatinib-G2 catalyst vs. dasatinib-G2 + dasatinib (off-compete control) reveals enrichment of several 
kinases (red), as well as lysosomal proteins (green) and established off-targets (blue). e, TMT-based quantitative chemoproteomic analysis in K562 cells comparing 
intracellular labelling by dasatinib-Dz-alkyne (PAL probe) vs. off-compete control does not reveal enrichment of kinases suitable for conclusive target ID. f, Initial 
western blot studies for paclitaxel-G2 labelling in MCF7 cells following irradiation and streptavidin bead enrichment reveals significant enrichment of a-tubulin by 
immunostaining compared to unconjugated iridium and DMSO controls. g, TMT-based quantitative chemoproteomic analysis in MCF7 cells comparing intracellular 
labelling by paclitaxel-G2 catalyst and unconjugated iridium catalyst (control) reveals enrichment of several tubulin isoforms. 
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an equivalent of (+)-JQ1 in the free iridium control (Scheme 2e). Upon chemoproteomic analysis we found that 
CD166 was similarly enriched, indicating that it may be a putative off-target binder of (+)-JQ1, although further 
biological validation is required. We further compared the interactomes of the enantiomers of JQ1-G2 and found 
the active (+) enantiomer, (1), delivered BRD2/3/4 as top hits, and while CD166 was detected it was not enriched, 
indicating that binding may not be affected by the stereogenic center (Scheme 2e). In contrast to these data, the 
same analysis using classical UV-based PAL employing (+)-JQ-Dz-alkyne (2)34, in our hands, did not lead to en-
richment of BRD proteins by western blot (Scheme 2g) or chemoproteomic analysis (Scheme 2h).  

The dual Src/Abl tryrosine kinase inhibitor dasatinib displays significant antileukemic effects against various 
imatinib-resistant mutants35. However, despite well-documented BCR/ABL inhibition, its precise downstream cel-
lular MOA remains to be fully understood. While the dasatinib interactome has been previously characterized16, 
most methods have been performed with recombinant protein or in cell-lysate; live cell data is typically restricted 
to kinase-based assays that measure downstream phosphorylation or residence at engineered kinase constructs, 
which can be challenging to deconvolute and fail to identify non-kinase based off targets36–39.  

As previous studies have demonstrated difficulties in maintaining potency and cell-permeability using dasatinib-
derived probes16, we started by synthesizing three truncated (desHydroxyEthylPiperazinyl)-dasatinib iridium con-
jugates using our cell-permeable Ir-G2 catalyst with varying PEG linker lengths (n = 3–5) (3) (Scheme 3, top). 
Gratifyingly, upon subjection of the desHEP-dasatinib-G2 conjugates (3) (5 µM) to our standard µMap protocol, 
all of the conjugates revealed enrichment of p38 (MAP kinase) by western blot analysis compared to off-compete 
(4X dasatinib) controls in THP1 cells (Figure S4). As the corresponding PEG5-G2 conjugate showed the greatest 
enrichment (3.5X enrichment vs. off-compete and 9.5X enrichment vs. free-Ir) (Scheme 3a), we undertook label 
free proteomic analysis of these reactions revealing significant enrichment of p38a (Figure S5), which has been 
shown to play a critical role in its antileukemic properties40, as well as several other established kinase interactors 
including Src and Lyn (Scheme 3b)41. Furthermore, we identified multidrug resistance transporter ABCC1 amongst 
the most enriched proteins – an important off target; understanding the interaction between drug molecules and 
efflux transporters is an important consideration in many drug discovery efforts42. Lysosomal sequestration of da-
satinib43, due to its lipophilic and weakly basic properties, was evident by the presence of cathepsin S (CTSS) 
amongst the most enriched proteins. Encouraged by these initial results, we turned our attention to the underex-
plored full dasatinib-PEG3-G2 catalyst (4), which retains the 2-hydroxyethylpiperazine tail. Importantly, we found 
a similar kinase inhibition profile against p38, in addition to Abl, by evaluation of downstream phosphorylation in 
Ph+ K562 cells, compared to the parent drug, again highlighting the compatibility of the iridium photocatalyst 
towards maintaining biological function and cell permeability (Scheme 3c) (Figure S6). Gratifyingly, subjection of 
our µMap labelling to TMT-based chemoproteomics revealed extensive enrichment of p38a as well as Myt1 and 
CSK kinases, both well-established binders of dasatinib (Scheme 3d)39. Moreover, known kinase off target fer-
rochelatase (FECH)44 was also significantly enriched, alongside large amino acid transporter (LAT3)39. Similarly, 
lysosomal protein cathepsin D (CTSD) was amongst the most enriched proteins. Notably, in our hands, state-of-
the-art photoaffinity labelling, employing dasatinib-diazirine-alkyne (5), revealed only trace enrichment of CSK 
and the kinases BTK and MAPK1 (BTK was found to be similarly enriched by µMap) (Scheme 3e).    

The anti-cancer properties of the natural product paclitaxel (Taxol) have been proposed to be derived from bind-
ing to microtubules, leading to stabilization and mitotic arrest; however, the full extent of its mechanism remains 
unclear45. Based on its widespread use and intriguing mechanism, we prepared the corresponding paclitaxel-Gen 2-
iridium conjugate (6) (Scheme 3, bottom) and assessed its cellular activity. Through a series of cell proliferation 
assays we found that our paclitaxel-G2 conjugate displayed similar anti-proliferative properties as the native com-
pound, suggesting that the pendent Ir-catalyst did not disrupt the native function of paclitaxel (Figure S7). Encour-
aged by this, we proceeded to study the efficiency of labelling in the breast cancer cell line MCF7. Following our 
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standard µMap protocol with 20 µM paclitaxel-G2 conjugate (6) for 3h, western blot analysis with anti-a-tubulin 
showed clear labelling of the target protein compared both the free iridium and DMSO controls (Scheme 3f). Sub-
jection of our µMap labelling to TMT-based chemoproteomics revealed extensive labelling of tubulin isotypes aIa, 
bIII, bIVb, and aIc (Scheme 3g), which is in good agreement with previous photoaffinity labelling studies on ex-
tracted tubulin46.    

Having established the efficacy of µMap target ID for intracellular proteins, we turned our attention to the cell 
surface. The exceedingly low abundance, lack of exposed residues, and aggregation-prone hydrophobic domains 
oftentimes confounds the detection and manipulation of membrane proteins, rendering target ID unfeasible19,47,48. 
These challenges are exacerbated when combined with the high background labelling, poor sensitivity, and low 
cross-linking yields systemic in PAL campaigns. We therefore felt that our µMap target ID platform was ideally 
placed to tackle these challenges by virtue of our catalytic signal amplification. We chose the adenosine receptor 
A2a (ADORA2A) as an exemplar membrane target. This GPCR has become an important target for immunother-
apy49, but critically, has never been identified through live cell chemoproteomics50,51. Using a reported ligand for 
ADORA2A that binds from the extracellular face, SCH5826152, we prepared both a tethered diazirine-conjugate, 
SCH58261-Dz (7), and an Ir-conjugate based on the more hydrophilic G1 catalyst, SCH58261-G1 (8); the low cell 

 
 
Scheme 4. Extracellular photocatalytic target ID of GPCR ADORA2A using SCH58261 at native expression. a, Structure of SCH58261-based Dz-
alkyne probe for PAL labelling and iridium conjugate based on hydrophilic G1 photocatalyst. b, Initial western blot studies for SCH58261-G1 labelling in 
A2a-expressing HEK293T cells following irradiation and streptavidin bead enrichment reveals significant biotinylation by immunostaining compared to un-
conjugated iridium and DMSO controls, in addition to PAL labelling. c, TMT-based quantitative chemoproteomic analysis in A2a-expressing HEK293T cells 
comparing extracellular labelling by SCH58261-Dz-alkyne vs. SCH58261-Dz-alkyne + SCH58261 (off-compete control) reveals inconclusive target ID of 
ADORA2A. d, TMT-based quantitative chemoproteomic analysis in PC-12 cells comparing extracellular labelling by SCH58261-G1 catalyst vs. SCH58261-
G1 + SCH58261 (off-compete control) reveals significant enrichment of ADORA2A. 
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permeability affording a higher effective concentration of photocatalyst probe on the cell surface (Scheme 4a). 
Photocatalytic labelling applied to A2a-expressing HEK293T cells, followed by western blot visualization, revealed 
a stark difference in labelling between the SCH58261-G1 (8) and the corresponding off-compete controls (Scheme 
4b). Tandem mass tag (TMT)-based chemoproteomic analysis of these reactions confirmed our initial result, with 
our photocatalytic-labelling method using SCH58261-G1 (8) showing a 10-fold enrichment for ADORA2A with 
respect to off-competing with the parent SCH58261 ligand, and >20-fold enrichment versus free-Ir photocatalyst 
(Figure S8a). In contrast, PAL using SCH58261-Dz (7), showed poor enrichment of ADORA2A by quantitative 
chemoproteomics (Scheme 4c), in line with western blot data (Figure S8b). Based on the degree of enrichment in 
A2a-expressing HEK293T cells, we were keen to ascertain how the µMap target ID platform performed at native 
levels of membrane protein concentration, wherein classical PAL remains extremely challenging. Remarkably, pho-
tocatalytic labelling using SCH58261-G1 (8) in PC-12 cells, which have previously been validated to natively ex-
press A2a

53, revealed similarly high levels of enrichment for the target protein ADORA2A – highlighting the signal 
amplification conferred by the µMap platform (Scheme 4d). Finally, we further validated this labelling technology 
by identifying the long chain fatty acid receptor GPR40, an important anti-diabetic therapeutic target, using the 
small molecule probe MK-8666, further expanding the repertoire of µMap membrane target ID (Figure S9–S12)54.    

In conclusion, we describe a general platform for photocatalytic target ID that utilizes cell-penetrating iridium 
conjugated-small molecules, which can bind protein targets, to locally activate proximal diazirines via Dexter en-
ergy transfer. The catalytic signal amplification conferred by µMap target ID has allowed for the identification of 
multiple protein targets and off targets across multiple drug classes and cellular compartments where established 
PAL have not been successful. As such, we envision that µMap target ID will find immediate use in providing a 
deeper biological understanding of efficacy target networks, quickly revealing off-target pharmacology, and ulti-
mately driving pharmacotherapy forward against novel targets within drug discovery programmes in both academic 
and industrial settings. 
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