Cellular Stress Response

Literature Talk **Chun (Alice) Li** April 2nd, 2024 When we are stressed...

Physical injuries

Working too hard

Excessive eating

Bad night of sleep

To destress

What would the cell do if it is stressed?

Cells will initiate relevant stress response pathways to destress as well!

Why do we need cellular stress response?

Stress response is key to the return to cellular and/or organismal homeostasis

Key types of stress response

DNA damage response

Key types of stress response

DNA damage response

Cellular Heat Shock Effect

Protein/lipid/DNA destabilization due to elevated temperature; Increased cell cycle arrest and cell death

Velichko, A. K. et al. Cell. Nol. Life. Sci. 2013, 70, 4229.

Heat Shock Response (HSR) Discovery

First described by **Ferruccio Ritossa in 1962 in Italy**

De Maio, A. et al. Cell Stress Chaperones. 2012, 17, 139.

Heat Shock Response (HSR) Discovery

First described by **Ferruccio Ritossa in 1962 in Italy**

Observed different chromosomal puffs in Drosophila genome during elevated temperatures

= increased expression of an unknown protein

Trimerized active HSF

Hentze, N. et al. *eLife*. **2016**, *5*, e11576. Akerfelt, M.; Morimoto, R. I.; Sistonen, L. Nat. Rev. Mol. Cel. Biol. **2010**, *11*, 545.

Conserved amount prokaryotes and eukaryotes 5-10% of total cellular protein content

Conserved amount prokaryotes and eukaryotes 5-10% of total cellular protein content

Function – maintain proteostasis, cellular housekeeping = chaperones

Conserved amount prokaryotes and eukaryotes 5-10% of total cellular protein content

Function — maintain proteostasis, cellular housekeeping = chaperones

Assist folding of newly synthesized polypeptide

Protein complex assembly

Ensure correct folding

Conserved amount prokaryotes and eukaryotes 5-10% of total cellular protein content

Function — maintain proteostasis, cellular housekeeping = chaperones

Classified by size/molecular weight

Classified by size/molecular weight

Each class contains multiple members

Classified by size/molecular weight

Each class contains multiple members

Different Hsp families/members have different functions and locations

HSP70

HSP90

Hsp70 substrate recognition

Recognize 5-residue hydrophobic core (preferably aliphatic residues)

Hydrophobic residues usually buried in globular proteins — exposure in solution indicates unfolded/misfolded

Rüdiger, S.; Germeroth, L.; Schneider-Mergener, J.; Bukau, B. EMBO J. 1997, 16, 1501.

1) only binds to **native-like proteins**

2) not just as a foldase, but also assist **protein conformational maturation**

Similar to Hsp70, both requires ATP; can accept partially folded structures from Hsp70
Heat shock proteins important in oncological/neurological disease settings as molecular chaperones

Cancer Cell

Tumor environment

eg. Hypoxia, acidosis, nutrient-deprivation

What if Hsp or other chaperones not working properly? Or overloaded with unfolded proteins?

Key types of stress response

DNA damage response

BiP as an HSP70 family chaperone

Endoplasmic Reticulum (ER)

Unfolded protein response happening in the ER

Endoplasmic Reticulum (ER)

Unfolded protein response happening in the ER

Endoplasmic Reticulum (ER)

Initial protein folding and maturation

Ca²⁺ reservoir

Gluconeogenesis

Lipid synthesis

Biogenesis of autophagasomes and peroxisomes Endoplasmic Reticulum (ER) environment important for protein folding

Endoplasmic Reticulum (ER) environment important for protein folding

Difference in folding conditions

Parameter	ER	Cytosol
Redox state	Oxidizing	Reducing
Calcium	From 0 to 1 mM	<1 µM
	free Ca ⁺⁺ major	
	protein-bound storage	
Energy generating system	No	Yes
Glycosylation machinery	Yes	No
Proteolytic machinery	No	Many
HSP70 chaperones	BiP/GRP78, GRP170	HSP70 ,HSC70
HSP90 chaperones	GRP94	HSP90
Stress response	ER stress response $=$	Heat shock response
	unfolded protein response	and metabolic stress

Comparison of conditions that affect protein folding and disposal of misfolded proteins (parameter) and the response to changes in these conditions between the ER and the cytosol.

Many chaperones/folding assisting proteins are Ca²⁺ dependent

Hetz, C. Nat. Rev. Mol. Cell. Biol. 2012, 13, 89.

Cancer cells bypassed apoptotic signals and utilize UPR as pro-survival mechanism

Hetz, C. Nat. Rev. Mol. Cell. Biol. 2012, 13, 89.

Cancer Stage	Tumour Stress	Tumour Requirement
Transformation	Oncogene activation Tumour suppressor loss	Increased protein folding capacity
Progression	Limiting oxygen and nutrient environment	Oxygen and nutrient supply
Metastasis	Cell detachment	Migratory phenotype
Chemoresistance	Chemotherapy treatment	Adaptation to chemotherapy induced stress and death

Cancer Stage	Tumour Stress	Tumour Requirement	UPR contribution
Transformation	Oncogene activation Tumour suppressor loss	Increased protein folding capacity	Protein folding Pro-survival UPR activation
Progression	Limiting oxygen and nutrient environment	Oxygen and nutrient supply	Proliferation Angiogenic factors Metabolic rewiring
↓ Metastasis	Cell detachment	Migratory phenotype	EMT trancription factors Loss of cell-cell contacts Vimentin
Chemoresistance	Chemotherapy treatment	Adaptation to chemotherapy induced stress and death	Pro-survival UPR activation Drug Efflux CSC expansion

Many key UPR players are founds in aggregates associated with neurodegenerative diseases

Protein misfolding and aggregation

What about macromolecules other than proteins?

Key types of stress response

DNA damage response

Double/single strand break

Double/single strand break

UV-crosslinking thymine dimers

Double/single strand break

8-oxoG formation

Base alterations/oxidations

UV-crosslinking thymine dimers

Double/single strand break

UV-crosslinking thymine dimers

8-oxoG formation

Base alterations/oxidations

Bulky adduct formation

Bulky adduct formation

Benzopyrene

- Formed at 300-600C incomplete combustion
- found in forest fire, tobacco smoke, and food like grilled meats

Bulky adduct formation

Benzopyrene

- Formed at 300-600C incomplete combustion
- found in forest fire, tobacco smoke, and food like grilled meats

Bulky adduct formation

Benzopyrene

Formed at 300-600C incomplete combustion

- found in forest fire, tobacco smoke, and food like grilled meats

During DNA replication, will commonly use A as complementary base pair - causing G -> T mutation DNA damage happening DAILY

DNA damage happening DAILY

Environmental exposures

Yousefzadeh, M. et al. eLife. 2021, 10, e62852.

DNA damage happening DAILY

Endogenous DNA adducts

Environmental exposures

Yousefzadeh, M. et al. eLife. 2021, 10, e62852.

Different damage = different repair pathways

Different damage = different repair pathways

Double strand break repair

Happens during G0/G1 phase of cell cycle

Error-prone repair

Happens during S/G2 phase of cell cycle High-fidelity repair

Non-homologous end joining (NHEJ)

Scully, R. et al. Nat. Rev. Mol. Cell. Biol. 2019, 20, 698. Nemoz, C. et al. Nat. Struct. Mol. Biol. 2018, 25, 971.

Non-homologous end joining (NHEJ)

Scully, R. *et al. Nat. Rev. Mol. Cell. Biol.* **2019**, *20*, 698. Chang, H. H. Y. *et al. Nat. Rev. Mol. Cell. Biol.* **2017**, *18*, 495.

Non-homologous end joining (NHEJ)

Scully, R. *et al. Nat. Rev. Mol. Cell. Biol.* **2019**, *20*, 698. Chang, H. H. Y. *et al. Nat. Rev. Mol. Cell. Biol.* **2017**, *18*, 495. Double strand break repair

Error-prone repair

Happens during S/G2 phase of cell cycle High-fidelity repair

In order to perform DNA damage repair, early DDR is needed to recognize the need

In order to perform DNA damage repair, early DDR is needed to recognize the need

In order to perform DNA damage repair, early DDR is needed to recognize the need

In order to perform DNA damage repair, early DDR is needed to recognize the need

In order to perform DNA damage repair, early DDR is needed to recognize the need

In order to perform DNA damage repair, early DDR is needed to recognize the need

In order to perform DNA damage repair, early DDR is needed to recognize the need

p53 and phospho-p53 level

Senesence readout by β-gal staining (black) Apoptosis readout by cell count

In MCF7 cells, low dose/short time of doxorubicin treatments leads to senescence;

Song, Y. S.; Lee, B. Y.; Hwang, E. S. Mech. Ageing. Dev. 2005, 126, 580.

Senesence readout by β-gal staining (black) Apoptosis readout by cell count

In MCF7 cells, low dose/short time of doxorubicin treatments leads to senescence; Higher dose leads to apoptosis

Song, Y. S.; Lee, B. Y.; Hwang, E. S. Mech. Ageing. Dev. 2005, 126, 580.

Senesence readout by β-gal staining (black) Apoptosis readout by cell count

Increased p53 and phospho-p53 levels observed in apoptotic conditions

In order to perform DNA damage repair, early DDR is needed to recognize the need

Recognizing DSB and other DNA damage – DNA damage response (DDR)

In order to perform DNA damage repair, early DDR is needed to recognize the need

Scully, R. et al. Nat. Rev. Mol. Cell. Biol. 2019, 20, 698.

DDR dysfunction

DDR dysfunction

eg. BRCA1 and breast cancer

DDR dysfunction

eg. BRCA1 and breast cancer

Impaired high-fidelity DSB repair

Irinotecan, DNA topoisomerase I inhibitor

Maximize DNA lesions going into mitosis — exceed the survival limit of cancer cell = apoptosis

Irinotecan, DNA topoisomerase I inhibitor

Maximize DNA lesions going into mitosis — exceed the survival limit of cancer cell = apoptosis

AZD7762, Chk1/2 inhibitor

AZD7762, Chk1/2 inhibitor

AZD7762, Chk1/2 inhibitor

Key types of stress response

DNA damage response

Low level reactive oxygen species are important for endogenous physiological signaling and activity

Low level reactive oxygen species are important for endogenous physiological signaling and activity

Supraphysiological concentration of ROS – reacts with DNA, proteins, lipids, etc.

Low level reactive oxygen species are important for endogenous physiological signaling and activity

Supraphysiological concentration of ROS – reacts with DNA, proteins, lipids, etc.

Chronically oxidized cellular environment commonly associated with tumor, neurodegenerative diseases, aging, etc.

 H_2O_2

 H_2O_2

Examples of oxidative damage on macromolecules

Examples of oxidative damage on macromolecules

Examples of oxidative damage on macromolecules

NRF2(NFE2L2) acts as an oxidative stress sensor through KEAP1

NRF2(NFE2L2) acts as an oxidative stress sensor through KEAP1

KEAP1 is an E3 ligase that negatively regulates NRF2 under normal conditions

NRF2(NFE2L2) acts as an oxidative stress sensor through KEAP1

KEAP1 is an E3 ligase that negatively regulates NRF2 under normal conditions KEAP1 has more than 20 Cys residues to "sense" oxidation

Purpose

short-term oxidative stress release, eg. catalase to destroy H2O2

Purpose

short-term oxidative stress release, eg. catalase to destroy H2O2

Work with NF-kB, mTOR, p53, HSP, AP-1, and more for long-term cytoprotection and reprogramming

Purpose

short-term oxidative stress release, eg. catalase to destroy H2O2

Work with NF-κB, mTOR, p53, HSP, AP-1, and more for long-term cytoprotection and reprogramming

Act as a tumor suppressor for early carcinogenesis

NRF2 role with cancer

Increased malignancy

NRF2 status Turned on only upon stress

Effect Protect cells from oxidative damage

Prevent cancer onset

NRF2 role with cancer

Increased malignancy

NRF2 status Turned on only upon stress

Effect Protect cells from oxidative damage

Prevent cancer onset

Constitutively on with mutations

Protective against endogenous high level of ROS Increase resistance and survival of cancer cells — poor patient outcomes

Pleiotropic response of ROS signaling

ROS physiological and pathological signaling are very complicated

Conclusion

Our cells are trying very hard to maintain cellular and organismal homeostasis
