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 Joseph Priestley, 1733 - 1804 
              British chemist 

The First Understandings of Photochemistry

  Priestley was the first to discover photosynthesis, albeit fortuitously


H2O   +   CO2                            O2   +   C6H12O6
hν

Discovered accidentally while Priestly was studying the “influence 
Of light in the production of ‘dephlogisticated air’ [O2] in water by 
Means of a ‘green substance’.” 
  
Priestley, J. Phil. Trans. Roy. Soc. (London) 1772, 62, 147 

       Jan Ingenhousz, 1730 - 1799 
Dutch chemist, physicist and physician 

  Ingenhousz developed photosynthesis more rigorously


Ingenhousz, along with Saussure, established the 
requirement of light in macroscopic photosynthesis. 

But, despite work by Liebig, Baeyer and Willstatter,  
electron transfer remained unsolved untill the 20th 
century when J. J. Thompson (1897) and Milikan  
(1913) convinced the community of the presence  

of the electron. 



J. W. Dobereiner, 1780 - 1849 
German Chemist 

Designed the first actinometer that measures the 
power of electromagnetic radiation 
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Electron Transfer and Actinometry

  Dobereiner foreshadowed photo-redox chemistry with actinometry


  The place and usefulness of actinometry was fiercely debated and no other

     photo-redox chemistry was studied in-depth in the 19th century


  Furthermore, prior to the advent of NMR, ESR, and CIDNP the presence of

     ionic radicals remained highly speculative and their identity often erroneously presumed.


  20th Century PET contributions were made by Bauer and Weiss.  The latter enunciated

     the basic form of modern PET theory:


“Fluorescence quenching in solution can be  
considered as a simple electron transfer process.” 

D* + Acc  =  D- + Acc+ 

Weiss, J.; Fischgold, H. Z. Physik. Chem. 1936, B32, 135. 



Photoinduced Electron Transfer: A Representative Mechanism

  Understanding α-amino radical formation is important for utlizing its reactivity
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Basics of Photoinduced Electron Transfer

  Efficiency dependent on redox potential

+

+

+

+

1Sens     +       D                                1Sens      +        D

1Sens     +       A                                1Sens      +        A

  More efficient as distance decreases

  Singlet-excited sensitizer is both a better
     oxidant AND reductant.  Both processes
     quench fluorescence

  Triplet fluorescence quenching is known

Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry University Science Books, Sausalito, CA. 2005, 955 - 958.



Energy Transfer Mechanisms do not Occur Via Polar Intermediates

  Energy Transfer I: Dexter Mechanism

+ +

3Sens*     +        A                                Sens       +     3A*

+ +

1Sens*     +       A                                1Sens      +       A*

  Energy Transfer II: Forster Mechanism

  Both Energy Transfer Mechanisms Require that E(excited state D) > E(excited state A)

  kee = KJe^(-2rDA/L), so rDA ~ 5 - 10 A

  Primarily triplet sensitization

  Can operate at over 50 A via a dipole-
     dipole (Coulombic) mechanism 
     (transition dipole coupling)
  Basis for FRET

Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry University Science Books, Sausalito, CA. 2005. 955 - 958. 



Kornblum, N; et. al. J. Am. Chem. Soc. 1955, 77, 6269; Angew. Chim. Int. Ed. 1975, 14, 734 

Reductive PET Bond Cleavage
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  Reductive cleavage proceeds by electron transfer to benzyl halide or pseudo-halide



Reductive PET Reactions and Non-Halide Examples

  NBoc substituents stabilize benzylic radical formation
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  OMe groups stabilize benzylic nucleofuges toward tandem epoxide ring openings

79%

Floreancig, P. E. Synlett 2007, 191. 



                 Cristol, S. J.; et. al. J. Am. Chem. Soc. 1987, 109, 830 
                      Zimmerman, H.; et. al. J. Am. Chem. Soc. 1963, 85, 913; J. org. Chem. 1986, 51, 4681. 

Wagner-Meerwein 
rearrangement 

Reductive PET Bond Cleavage

  Homobenzylic chlorides also participate in reductive PET chemistry
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  Besides anti/syn considerations, differences occur between homopara vs. homometa C-X bonds
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Mariano, P. S.; et. al. J. Am. Chem. Soc. 1982, 104, 617 

Oxidative PET Bond Cleavage
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  A representative and early example of oxidative PET bond cleavage



Oxidative Intramolecular PET Bond Cleavage
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  Intramolecular C-C bond formation to form indolizidines

  Intramolecular organocatalytic Hiyama-type coupling

  Difficult to perform this chemistry as efficiently with a non-PET approach (polar reagents)
Mariano, P. S.; et. al. J. Am. Chem. Soc. 1984, 106, 6439. 



Mariano, P. S.; et. al. J. Am. Chem. Soc. 1994, 116, 4211. 

Oxidative PET Bond Cleavage
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  Less polar and aprotic solvents (MeCN alone) afford product retaining silyl group
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Hu, S.; Neckers, D. C. Tetrahedron 1997, 53, 2751 

Application to Macrocyclic RIng Closures

O

O

O
N
R2

R1

N

O

O
HO

Ph

R1

R2

PET

O

O

O
S R1

R2

PET

S

O

O
HO

Ph
R1

R2

38 - 76%

35 - 65%

N N
H

N
H

S
O

O

HO

O 36%

Hasegawa, T. Tetrahedron, 1998, 54, 12223 

Griesbeck, A. G.; Mattay, J., Eds. Synthetic Organic Photochemistry Marcel-Dekker, New York, 2005. 276. 



Application to Poison Frog Therapeutics
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  Carbohydrate-mimetic hydroxylated indolizidines

(+)-Pumiliotoxin

  Antidiabetics, antiviral, anticancer, 
     immunosuppressant, transplantation
     medicine

  Pyrrolizidines also offer opportunities for synthetic application

alexine riddelliine

  Potent glycosidase inhibitor, antiviral, 
     anti HIV, anticancer

  Insect defense agent

Griesbeck, A. G.; et. al. Acc. Chem. Res. 2007, 40, 128. 

Dendrobates spp. 



Mariano, P. S.; et. al. J. Am. Chem. Soc. 1991, 113, 8847 

Intermolecular Non-Silylated, Simple Amino-Alkyl Additions

  Triplet sensitizers have very specific transition energies and can markedly improve reaction efficiency
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Proposed Mechanism for Pyrrolidine Addition

  The catalytic cycle may provide more than one opportunity for a product forming step
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77 - 94% 
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Further Development of Amine Coupling Partners

  Triethyl amine, piperidone and other amines are a viable coupling partner in PET C-C bond construction
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Org. Biomol. Chem. 2006, 4, 1202; Zard Angew. Chim. Int. Ed. 1997, 36, 672. 



Bertrand, S.; et. al. J. Org. Chem.2000, 65, 8690; Marinkovic, S.; et. al. J. Org. Chem. 2004, 69, 1646. 

Intramolecular Trapping of Presumed Oxy-allyl Radical

  When trapping oxy-allyl radical acetone was necessary to act as benign oxidant
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Demuth, M. J.; et. al. J. Am. Chem. Soc. 1999, 121, 4894; Griesbeck, A. G.; et. al. Angew. Chem. 2001, 113, 586 

Non-Direct Methods for Enantioinduction in PET Reactions

  Cascade cyclization of terpene polyolefins via photoinduced electron transfer
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  Memory of chirality PET study explained by rigidity of amide and aniline bonds toward rotation
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Recent Precedent for Catalytic Asymmetric PET Carbon-Carbon Bond Formation

  The Bach example is the only method thus far for a direct, catalytic, asymmetric reaction with chemical
     yields above 1%

Bauer, A.; Westkamper, F.; Grimme, S.; Bach, T. Nature 2005, 436, 1139 



Evidence Supporting the Occurence of Charge Separation
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  Why should we trust that charge separation is occuring?

  2 Fluoresces upon irradiation and is quenched upon increasing concentration of 1 in solution.
     This levels off at 1 molar equivalent of 1.

  Quenching of simple anthracene* fluorescence by adition of aniline only occurs at 2%.

  If masked donor (R = COCHMe2) is used, little quenching occurs.

  Thus, diffusion controlled collisional quenching cannot be responsible for electron transfer.

Ka = 38,000 +/- 1300 M-1
  ΔGo

CS = -0.41 eV; ΔGo
CR = -2.5 eV

Sessler, J. L.; et. al. J. Am. Chem. Soc. 2001, 123, 3655. 



PET Projects in Total Synthesis

  Selected natural products formed by PET bond-constructive key steps

O

O

Me
Me N

Bn

SiMe3

O

O

Me
Me N

Bn

PET

NH

HO

HO

OH

60%

N

O

O

HO
MeO

MeO

berberine analog

N
H

OH

(+/-)-epilupinine

(+)-isofagomine

HN

O

O

OHHO

HO

O

(+)-2.7-dideoxypancratistatin

O Me

OO
HO

Me Me

H

H

Me

Me Me

(+/-)-stypoldione
polyterpene cyclization

HOMe

H

Me
Me

Me
(+/-)-isoafricanol

O

HO OH

HO CO2Me

C-furanoside

Griesbeck, A. G.; Mattay, J., Eds. Synthetic Organic Photochemistry Marcel-Dekker, New York, 2005. 292. 



Conclusions 

•  Photoinduced electron transfer (PET) utilizing alpha-
amino radicals was shown to be applicable to 
problem solving in organic synthesis. 

•  Alpha oxo- and alpha thio-radicals are also useful. 
•  Advantages - unique and/or expedited carbon-carbon 

bond construction; vastly underexploited asymmetric 
potential for interesting reactivity. 

•  Disadvantages - Limited substrate scope and/or 
specific wavelength for some methods.  


