Radical Cations⁺: Generation, Reactivity, Stability

MacMillan Group Meeting 4-27-11 by Anthony Casarez

Three Main Modes to Generate Radical Cations

Chemical Oxidation

Stoichiometric oxidant: SET

MacMillan et al. *Science* **2007**, *316*, 582. Booker-Milburn, K. I. *Synlett* **1992**, 809. Photoinduced Electron Transfer

PET: Organic arene

hv, MeCN, MeOH

PET: Metal mediated

Arnold, D. R.; Maroulis, A. J. *J. Am. Chem. Soc.* **1976**, *98*, 5931. Ischay, M. A.; Lu, Z.; Yoon, T. P. *J. Am. Chem. Soc.* **2010**, *132*, 8572. Electrochemical Oxidation

Anodic oxidation

Ponsold, K.; Kasch, H. *Tetrahedron Lett.* **1979**, 4463. M. J. Gašić et al. *J. Chem. Soc. Chem. Comm.* **1993**, 1496.

Key Points

- A radical cation will be generated from the electrophore on the molecule with the lowest oxidation potential (usually π or n, where n = nonbonding electrons).
- The chemistry of the resultant radical cation is determined from the functionality around its periphery.
- Deprotonation of the radical cation is a major pathway, resulting in a radical which adheres to typical radical reactivity patterns.

Secondary reactions play a major role in our generation and use of radical cations.

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A [•] + H ⁺	O, N, S, X	н
AB	A–B bond cleavage	π -A' + B ⁺ or π -A ⁺ + B'	А	В
CC	C–C bond cleavage	π-C · + C+	С	С
СХ	C–X bond cleavage	π-C [•] + X ⁺	С	Si, Sn
Nu	Nu attack	Nu-π-A-B ⁺⁺	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	π -A-B or π -A-B ²⁺	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	А	В
Dim	dimerization	(π- A-B) ₂ ²⁺	А	В

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π- Α' + Η +	O, N, S, X	н
AB	A–B bond cleavage	π-A [•] + B ⁺ or π-A ⁺ + B [•]	A	В
CC	C–C bond cleavage	π-C ` + C+	С	С
CX	C–X bond cleavage	π-C ` + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B'+	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	$\pi\text{-}A\text{-}B$ or $\pi\text{-}A\text{-}B^{2+}$	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	А	В
Dim	dimerization	(π-A-B) ₂ ²⁺	А	В

Thermochemical Cycle: Calculating pKa's

Nicholas, A. M. de P.; Arnold, D. R. Can. J. Chem. 1982, 60, 2165.

Deprotonation

Acidity of a radical cation is severely increased compared to the neutral counterpart.

R-H	рКа (π-RH ^{·+})	pKa (π-RH)	reference
PhC H₂ CN	-32	21.9	а
PHC H₂ SO2Ph	-25	23.4	b
Ph₂C H₂	-25	32.2	С
PhCH ₃	-20	43	С
indene (3-H)	-18	20.1	d
Cp H	–17	18.0	c,e
fluorene (9-H)	–17	22.6	f
C ₅ Me ₅ H	-6.5	26.1	е

a) Bordwell et al. *J. Phys. Org. Chem.* **1988**, *1*, 209. b) Bordwell et al. *J. Phys. Org. Chem.***1988**, *1*, 225. c) Bordwell, F. G.; Cheng, J.-P. *J. Am. Chem. Soc.* **1989**, *111*, 1792. d) Bordwell, F. G.; Satish, A. V. *J. Am. Chem. Soc.* **1992**, *114*, 10173. e) Bordwell, F. G.; Cheng, J.-P. *J. Am. Chem. Soc.* **1988**, *110*, 2872. f) Bordwell, F. G.; Cheng, J.-P.; Bausch, M. J. *J. Am. Chem. Soc.* **1988**, *110*, 2867.

Deprotonation

Bordwell, F. G.; Zhang, X. J. Org. Chem. 1992, 57, 4163.

Secondary Reactions

Secondary Reactions play a major role in "radical cation" chemistry.

Code	Secondary Rxn	Product	Oxidation System
R' _{ox}	R' → R+	cation	anode, chemical
R' _{red}	R' -→ R-	anion	PET
R [•] _{rad}	typical radical behavior	various	all
R [•] add.ox	R' + C=C→ R-C-C'→ R-C-C+	cation	anode, chemical
R' _{add.red}	R' + C=C→ R-C-C'→ R-C-C-	anion	PET
R' _{RA}	R' + R'- → R-R'-	anion	PET

π-RH⁺ Deprotonation

 \blacksquare π -RH⁺ deprotonation followed by a secondary reactivity pathway (benzylic radical)

Ponsold, K.; Kasch, H. Tetrahedron Lett. 1979, 4463.

Determining *n* vs π Electrophores

Consider the ionization potential of the separate n- and π - moieties

Oxidation with typically take place at the center with the lower ionization potential

Schmittle, M.; Burghart, A. *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 2550. H. M. Rosenstock et al. *J. Phys. Chem. Ref. Data* **1977**, *6*, Suppl. 1.

n-RH⁺ Deprotonation

n-RH⁺ deprotonation followed by a secondary reactivity pathway (α -amino radical)

T. Shono et al. J. Am. Chem. Soc. 1982, 104, 5753.

n-RH⁺ Deprotonation

Typical arene oxidation products are observed

• Observation of these products indicates that the arene is the site of oxiation, not *N*-lone pairs

T. Shono et al. J. Am. Chem. Soc. 1982, 104, 5753.

 σ -CH⁺ Deprotonation

Deprotonation of the radical ion pair happens by the solvent

 σ -CH⁺ Deprotonation

Deprotonation of the radical ion pair happens by the solvent

Albini et al. J. Chem. Soc. Chem. Commun. 1995, 41.

π -AH⁺ Deprotonation

\pi-OH⁺⁺ deprotonation is very prevalent while π -NH⁺⁺ deprotonations are rare.

π -AH⁺ Deprotonation

\pi-OH⁺⁺ deprotonation is very prevalent while π -NH⁺⁺ deprotonations are rare.

Morrow, G. W.; Chen, Y. Swenton, J. S. *Tetrahedron* **1991**, *47*, 655.

 π -AH⁺ Deprotonation

Reaction at the ortho-position can also occur

Implementing a biased substrate forces reaction at the ortho-position

T. Osa et al. J. Chem. Soc. Chem. Commum. 1994, 2535.

n-AH⁺ Deprotonation: Very Limited

The details surrounding the cycloaddition below are speculative at best.

The limited examples show how rare these deprotonations are

Shine, H. J.; Hoque, A. K. M. M. J. Org. Chem. 1988, 53, 4349.

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A' + H+	O, N, S, X	Н
AB	A–B bond cleavage	π-A' + B ⁺ or n-A' + B ⁺	А	В
CC	C–C bond cleavage	π-C [•] + C ⁺	С	С
CX	C–X bond cleavage	π-C ` + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B'+	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	$\pi\text{-}A\text{-}B$ or $\pi\text{-}A\text{-}B^{2+}$	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	А	В
Dim	dimerization	(π-A-B) ₂ ²⁺	А	В

π -A-B⁺ Bond Dissociation

Dienolether has a lower oxidation potential than the enolether

Eventhough [O] may happen at n (lone pairs), the resonance structure affords the π-oxidized product.

π -A-B⁺ Bond Dissociation

Certain Mukaiyama–Michael reactions are postulated to operate via a radical cation initiated fragmentation

Lewis Acid	4°–4° product	4°–2° product	Product ratio
Bu ₂ Sn(OTf) ₂	85	0	100:0
SnCl ₄	95	0	100:0
Et ₃ SiClO ₄	93	0	100:0
TiCl ₄	97	2.4	97:3

Mukaiyama–Michael Proposed Catalytic Cycle

n-A-B⁺ Bond Dissociation

Limited mostly to azoalkanes and triazines

Adam, W.; Sendelbach, J. J. Org. Chem. 1993, 58, 5316.

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A' + H+	O, N, S, X	н
AB	A–B bond cleavage	π-A' + B ⁺ or n-A' + B ⁺	А	В
CC	C-C bond cleavage	π-C ` + C+	С	С
CX	C–X bond cleavage	π-C ` + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B ^{•+}	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	$\pi\text{-}A\text{-}B$ or $\pi\text{-}A\text{-}B^{2+}$	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	А	В
Dim	dimerization	(π- A-B) ₂ ²⁺	А	В

π -C-C⁺ Bond Dissociation

Fragmentation of a β -ether generates an oxocarbenium ion

Arnold, D. R.; Maroulis, A. J. J. Am. Chem. Soc. 1976, 98, 5931.

Stereoelectronic Effects in Deprotonation and Fragmentation

Poniatowski, A.; Floreancig, P. A. In *Carbon-Centered Free Radicals and Radical Cations*; Forbes, M. E., Ed.; Wiley & Sons: New Jersey, **2010**; Vol 3., pp 43-60. D. R. Arnold et al. *Can. J. Chem.* **1997**, *75*, 384.

π -C-C⁺ Bond Dissociation

■ Nucleophile assisted C–C bond fragmentation with complete inversion of stereochemistry

Nucleophile assisted π -C-C⁺ fragmentation is limited to strained systems

Dinnocenzo et al. J. Am. Chem. Soc. 1990, 112, 2462.

n-C-C⁺ Bond Dissociation

To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical must be stabilized by a moiety on the molecule

M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.

n-C-C⁺ Bond Dissociation

To drive the reaction, the electrophore must be highly prone to oxidation or the resulting radical must be stabilized by a moiety on the molecule

M. J. Gašić et al. J. Chem. Soc. Chem. Comm. 1993, 1496.

n-C-C⁺⁺ Bond Dissociation

A. Albini et al. Tetrahedron Lett. 1994, 50, 575.

 σ -C-C⁺ Bond Dissociation

ESR studies on strained systems show that the inner C-C bond is selectively weakened

Trapping of the pendant olefin and Cl abstraction form the bicycle

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A' + H+	O, N, S, X	н
AB	A–B bond cleavage	π-A' + B ⁺ or n-A' + B ⁺	А	В
CC	C-C bond cleavage	π-C' + C +	С	С
СХ	C–X bond cleavage	π-C ` + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B'+	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	π -A-B or π -A-B ²⁺	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	А	В
Dim	dimerization	(π- A-B) ₂ ²⁺	А	В

π -C-X⁺ Bond Dissociation: Calculated BDE's

- Aromatic ionization severely weakens the adjacent bond by ~30 kcal/mol on average
- Si and Sn are the most common X-groups used as fragmentation substrates

Reaction	<i>∆H_R</i> (p-C-X ^{·+}) BDE kcal/mol	<i>∆H_R</i> (p-C-X) BDE kcal/mol	Ref
$PhCH_2-SiMe_3^{+} \rightarrow PhCH_2^{+} + Me_3Si^{+}$	+30	+77	а
$PhCH_2 - Cl'^+ - PhCH_2^{2+} + Cl'$	+40	+72	b
$PhCH_2 - Br^{+} - PhCH_2^{2+} + Br^{-}$	+26	+58	b
PhCH₂–OMe ^{·+} → PhCH₂ ²⁺ + [•] OMe	+43	+71	b
PhCH₂–SMe ^{·+} → PhCH₂ ²⁺ + [·] SMe	+38	+61	b
PhS-Xan ⁺ → PhS ⁺ + Xan ⁺	-11	+26.4	С
PhS–TPCP [·] + → PhS [·] + TPCP ⁺	-18.6	+40.3	С

Xan = 9-xanthyl; TPCP = 1,2,3-triphenylcyclopropenyl

- a) J. P. Dinnocenzo et al. J. Am. Chem. Soc. 1989, 111, 8973.
- b) Schmittle, M.; Burghart, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 2550.
- c) E. M. Arnett el al. J. Am. Chem. Soc. 1992, 114, 221.

π -C-X⁺ Bond Dissociation

R₃Si– and R₃Sn– moieties can be used as "super protons"

The dependence of k on MeOH, H ₂ O, Bu ₄ NF indicates Nu-assisted Si-bond cleavage	SiMe ₃	anode, Et₄NOTs MeOH, 91%	OMe
--	-------------------	-----------------------------	-----

π -C-X⁺ Bond Dissociation

R₃Si– and R₃Sn– moieties can be used as "super protons"

P. S. Mariano et al. J. Am. Chem. Soc. 1984, 106, 6439.

n-C-X⁺⁺ Bond Dissociation

■ Iminium ion used in the "cation pool" method is generated via n-C-X⁺ cleavage

J. Yoshida et al. J. Am. Chem. Soc. 2005, 127, 7324.

π -C-X⁺ Bond Dissociation

"Cation pool" oxidizes benzylsilane directly

Oxidation potential of benzylsilane must be <1.5 V, otherwise a catalytic benzylstannane can be added to initiate the reaction

π -C-X⁺ Bond Dissociation

"Cation pool" oxidizes benzylsilane directly

Oxidation potential of benzylsilane must be <1.5 V, otherwise a catalytic benzylstannane can be added to initiate the reaction

J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902.

Proposed Mechanism

J. Yoshida et al. J. Am. Chem. Soc. 2007, 129, 1902.

n-C-X⁺ Bond Dissociation

Pandy, G.; Reddy, G. D. *Tetrahedron Lett.* **1992**, *33*, 6533. Steckhan et al. *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 2137. Mariano et al. *J. Org. Chem.* **1992**, *57*, 6037.

σ -C-X⁺ Bond Dissociation

Coupling of the radical cation to the oxidant is the prominent primary fate after σ -C-X⁺ cleavage

Mariano P. S.; Ohga, K. *J. Am. Chem. Soc.* **1982**, *104*, 617. Otsuji et al. *Tetrahedron Lett.* **1985**, *26*, 461.

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A [•] + H ⁺	O, N, S, X	н
AB	A–B bond cleavage	π-A' + B ⁺ or n-A' + B ⁺	А	В
CC	C–C bond cleavage	π-C · + C+	С	С
CX	C–X bond cleavage	π-C' + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B'+	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	π -A-B or π -A-B ²⁺	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	А	В
Dim	dimerization	(π- A-B) ₂ ²⁺	А	В

Nu-π-A-B^{•+}

Trauner en route to (–)-guanacastepene E

Mihelcic, J.; Moeller, K D. *J. Am. Chem. Soc.* **2004**, *126*, 9106. Trauner et al. *J. Am. Chem. Soc.* **2006**, *128*, 17057.

Nu-n-A-B*+

The authors do not rule out the possibility of olefin oxidation as an alternative mechanism

Nu-n-A-B*+

Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163.

Nu-n-A-B*+

Initially formed nitrene is immediately protonated

Newcomb, M.; Deeb, T. M. J. Am. Chem. Soc. 1987, 109, 3163.

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A' + H+	O, N, S, X	Н
AB	A–B bond cleavage	π-A' + B ⁺ or n-A' + B ⁺	А	В
CC	C-C bond cleavage	π-C · + C+	С	С
CX	C–X bond cleavage	π-C' + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B ⁺	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	$\pi\text{-}A\text{-}B$ or $\pi\text{-}A\text{-}B^{2+}$	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	А	В
Dim	dimerization	(π- A-B) ₂ ²⁺	А	В

Cycloaddition

Experimental kinetic data for radical cation cycloadditions (rt)

Reaction	<i>k</i> [M⁻¹s⁻¹]	comments	reference
+ +	3 x 10 ⁸	Mostly [4 + 2] endo adduct; ratio of/to [2 + 2] varied by concentration	a, b
p-An + + p-An + Me	<6.7 x 10 ⁷	 [2 + 2] terminated by C-H^{-−} deprotonation concerted reaction 	b
p-An + p-An	1) 1.4 x 10 ⁹ 2) 1.4 x 10 ⁹ 3) 1 x 10 ¹⁰	 concerted cycloaddition assumed distonic 1,4-radical cation intermediate 	c,d
+ p-An	7 x 10 ⁸	21% Diels–Alder adduct	е
+ p-An	^{Me} 1.5 x 10 ⁶	80% Diels-Alder adduct	е

a) Calhoun, G. C.; Schuster, G. B. *J. Am. Chem. Soc.* **1984**, *106*, 6870. b) Lorenz, K. T.; Bauld, N. L. *J. Am. Chem. Soc.* **1987**, *109*, 1157. c) Takamuku et al. *J. Org. Chem.* **1991**, *56*, 6240. d) Schepp, N. P; Johnston, L. J *J. Am. Chem. Soc.* **1994**, *116*, 6895. e) Schepp, N. P; Johnston, L. J *J. Am. Chem. Soc.* **1994**, *116*, 10330.

Diels–Alder [4 + 2] Cycloaddition

Shown to operate via a cation radical chain mechanism

Suprafacial selectivity observed

Bauld et al. *J. Am. Chem. Soc.* **1981**, *109*, 3163. Lorenz, K. T.; Bauld, N. L. *J. Am. Chem. Soc.* **1987**, *109*, 1157

Diels–Alder [4 + 2] Cycloaddition

Shown to operate via a cation radical chain mechanism

Bauld et al. *J. Am. Chem. Soc.* **1981**, *109*, 3163. Lorenz, K. T.; Bauld, N. L. *J. Am. Chem. Soc.* **1987**, *109*, 1157

[2 + 2] Cycloaddition

Photoredox catalyzed radical cation formation

Electron donating substituent on the arene is necessary to promote the initial oxidation

Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.

[2 + 2] Cycloaddition

Stereoconvergent transformation

Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572.

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A' + H+	O, N, S, X	Н
AB	A–B bond cleavage	π-A' + B ⁺ or n-A' + B ⁺	А	В
CC	C-C bond cleavage	π-C · + C+	С	С
CX	C–X bond cleavage	π-C' + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B ⁺	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	π -A-B or π -A-B ²⁺	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	А	В
Dim	dimerization	(π- A-B) ₂ ²⁺	А	В

Claisen Rearrangement: A Representative Example

Though potentially powerful, the radical cation Claisen rearrangement has found very limited use in synthsis

The radical cation Cope rearrangement seems to be limited to aryl substituted systems.

Both radical (Rad) and radical anion (RA) have been previously discussed

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A' + H+	O, N, S, X	н
AB	A–B bond cleavage	π-A' + B ⁺ or n-A' + B ⁺	А	В
CC	C–C bond cleavage	π-C' + C +	С	С
CX	C–X bond cleavage	π-C' + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B ⁺⁺	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	$\pi\text{-}A\text{-}B$ or $\pi\text{-}A\text{-}B^{2+}$	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	A	В
Dim	dimerization	(π-A-B) ₂ ²⁺	А	В

Symbol	Classification	Primary Product	Α	В
СН	C–H deprotonation	π -C' + H ⁺ or n-C' + H ⁺	С	Н
AH	A–H deprotonation	π-A' + H+	O, N, S, X	Н
AB	A–B bond cleavage	π-A' + B ⁺ or n-A' + B ⁺	А	В
CC	C-C bond cleavage	π-C' + C +	С	С
CX	C–X bond cleavage	π-C' + X+	С	Si, Sn
Nu	Nu attack	Nu-π-A-B ^{•+}	А	В
CA	cycloaddition	cycloaddition	А	В
R	rearrangement	rearrangement	А	В
ET	electron transfer	$\pi\text{-}A\text{-}B$ or $\pi\text{-}A\text{-}B^{2+}$	А	В
Rad	radical attack	R-π-A-B+	А	В
RA	radical anion attack	RA-π-A-B	А	В
Н	hydrogen transfer	H-π-A-B+	A	В
Dim	dimerization	(π-A-B) ₂ ²⁺	A	В

Hydrogen Transfer

The Hofmann–Löffler–Freytag reaction

Typically a 1,5-H-atom abstraction

Hydrogen Transfer

The Hofmann–Löffler–Freytag reaction

Intermediate en route to the synthesis of kobusine

HO

Me

ΌН

Radical Cations in Synthesis: Floreancig Lab

Epoxonium cyclization

Cyclic acetal formation en route to theopederin D

Houk and Floreancig et al. *J. Am. Chem. Soc.* **2007**, *129*, 7915. Floreancig et al. *Angew. Chem. Int. Ed. Engl.* **2008**, *47*, 7317.

Radical Cations in Synthesis

Used in Moeller's synthesis of nemorensic acid

Moeller et al *J. Am. Chem. Soc.* **2002**, *124*, 10101. Boger et al *J. Am. Chem. Soc.* **2008**, *130*, 420.

Radical Cations in Synthesis: MacMillan Lab

