1 IA																	18 VIIIA
1 Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	² He Helium 4.002602
³ Li	Be											5 B	⁶ C	⁷ N	* O	F	[™] Ne
6.94	9.0121831	-										10.81	12.011	14.007	15.999	18.998403163	20.1797
Na	Mg		4	5	6	7	•	٩	10	11	12	A	Si	P	Ŝ	["] CI	∣ [°] Ar ∣
Sodium 22.98976928	Magnesium 24.305	Пів	IVВ	VВ	VIB	víib	VIIIB	VIIIB	VIIIB	IB	IIB	Aluminium 26.9815385	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45	Argon 39.948
¹⁹ K	°Ca	Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	Ga	Ge	³³ As	°³4Se	³⁵ Br	³⁶ Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
³⁷ Rb	^³ Sr	³⁹ Y	^₄ Zr	^₄ Nb	Mo	TC	^{₄₄} Ru	^{₄₅} Rh	⁴⁶ Pd	Ag	⁴⁸ Cd	⁴⁹ In	⁵Sn	⁵Sb	⁵² Te	53	⁵⁴ Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.293
⁵⁵ Cs	⁵Ba	57 - 71 Lanthanoids	⁷² Hf	[™] Ta	⁷⁴ W	[™] Re	⁷⁶ Os	⁷⁷ lr	⁷⁸ Pt	⁷⁹ Au	[⊪] Hg	⁸¹ TI	⁸² Pb	Bi	Po	^{⁵⁵} At	[₿] Rn
Caesium 132.90545196	Barium 137.327		Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.592	Thallium 204.38	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Radon (222)
⁸⁷ Fr	₿Ra	89 - 103	¹⁰⁴ Rf	Db	Sa	Bh	Hs	¹⁰⁹ Mt	¹¹⁰ Ds	Ra	¹¹² Cn	¹¹³ Nh	FI	Мс	LV	¹¹⁷ Ts	¹¹⁸ Oa
Francium (223)	Radium (226)	Actinoids	Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

57 La Lanthanum	58 Cerium	59 Pr Praseodymium	Neodymium	61 Promethium	Samarium	Eu Europium	Gadolinium	⁶⁵ Tb Terbium	⁶⁶ Dy Dysprosium	67 HO Holmium	Erbium	69 Tm Thulium	70 Yb Ytterbium	
138.90547 89 AC	90 Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	98 Cf	99 ES	100 Fm	^{168.93422} 101 Md	173.045 102 NO	174.9668 103
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

Andria Pace

MacMillan Group Meeting

Literature Talk

April 12, 2022

I IA	1																18 VIIIA
Hydrogen	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium
³ Li	Be											^₅ В	° C	⁷ N	°O	° F	Ne
Lithium 6.94	9.0121831											Boron 10.81	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998403163	Neon 20.1797
Na	Mg		4	5	6	7	9	٩	10	-11	12	¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S		¹⁸ Ar
Sodium 22.98976928	Magnesium 24.305	шв	īvв	vв	VIB	víib	VIIIB	VIIIB	VIIIB	ıв	IIB	Aluminium 26.9815385	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45	Argon 39.948
¹⁹ K	°Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	^{³0} Zn	°Ga	Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51,9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72,630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
³⁷ Rb	³°Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	⁵Sn	⁵¹Sb	⁵² Te	53	⁵⁴ Xe
Rubidium	Strontium 87.62	Yttrium 88.90584	Zirconium 91,224	Niobium 92,90637	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver 107.8682	Cadmium	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium	lodine	Xenon 131.293
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Ba	57 - 71 Lanthanoids	Hf	Ta	W	Re	OS	Ir	Pt	Au	Hg	TI	Pb	Bi	PO	At	Rn
Caesium 132.90545196	Barium 137.327		Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.592	Thallium 204.38	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Radon (222)
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
∣⊢r	ка	89 - 103 Actinoids	Kt	DD	Sg	BU	HS	IVIT		Кд	Cn	Nh					Ug
Francium (223)	Radium (226)		Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

Lanthanum	58 Ce Cerium	⁵⁹ Pr Praseodymium	⁶⁰ Nd Neodymium	Promethium	⁶² Sm Samarium	Europium	Gadolinium	Trebium	⁶⁶ Dy Dysprosium	67 HO Holmium	Erbium	69 Tm Thulium	⁷⁰ Yb Ytterbium	
^{138.90547} 89 AC	90 Th	91 Pa	92 U	93 Np	94 Pu	⁹⁵ Am	⁹⁶ Cm	97 Bk	98 Cf	99 ES	^{167,259}	101 Md	173.045 102 NO	103 Lr
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

interconversion between diverse oxidation states

versatile and widely used in cross coupling

utilized in natural product synthesis, agrochemistry, and pharmaceutical production

Palladium: a versatile element

57 La Lanthanum	Cerium	59 Pr Praseodymium	⁶⁰ Nd Neodymium	Promethium	62 Sm Samarium	Europium	64 Gadolinium	Tb Terbium	⁶⁶ Dy Dysprosium	67 Ho Holmium	Erbium	69 Tm Thulium	70 Yb Ytterbium	Lutetium
^{138.90547} ⁸⁹ AC	⁹⁰ Th	⁹¹ Pa	92 92	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	96 Cm	97 Bk	98 Cf	99 ES	¹⁰⁰ Fm	^{108,93422}	^{173.045} 102 NO	103 Lr
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

interconversion between diverse oxidation states

versatile and widely used in cross coupling

utilized in natural product synthesis, agrochemistry, and pharmaceutical production

Palladium: a versatile element

2010 Nobel Prize in chemistry

HeckNegishiSuzuki"For palladium-catalyzed cross-coupling in organic synthesis"StilleSonogashiraTsuji-Trost

Hiyama-Denmark Buchwald-Hartwig

interconversion between diverse oxidation states

versatile and widely used in cross coupling

utilized in natural product synthesis, agrochemistry, and pharmaceutical production

interconversion between diverse oxidation states

versatile and widely used in cross coupling

utilized in natural product synthesis, agrochemistry, and pharmaceutical production

Qureshi, M.; Njardarson, J. "Top 200 Small Molecule Pharmaceuticals by Retail Sales in 2020."
Bollikonda, S.; Mohanarangam, S.; Jinna, R.; Kandirelli, V.; Makthala, L.; Sen, S.; Chaplin, D.;
Lloyd, R.; Mahoney, T.; Dahanukar, V.; Oruganti, S.; Fox, M. J. Org. Chem. 2015, 80, 3891.

New elementary steps can provide alternative mechanistic pathways to access key intermediates or activate typically inert coupling partners

What is radical-based palladium chemistry?

What is radical-based palladium chemistry?

What is radical-based palladium chemistry?

What is radical-based palladium chemistry?

Three main areas of radical-based palladium chemistry

Three main areas of radical-based palladium chemistry

University of Michigan

WWU Münster

Chapel Hill

Three main areas of radical-based palladium chemistry

Chapel Hill

University of Michigan

Research in the Sanford group

Bourm J.; Camasso, N.; Sanford, M. *J. Am. Chem. Soc.* **2015**, *137*, 8034. Mossine, A.; Brooks, A.; Makaravage, K.; Miller, J.; Ichiishi, N.; Sanford, M. *Org. Lett.* **2015**, *17*, 5780. Sevov, C.; Brooner, R.; Chenard, E.; Assary, R.; Moore, J.; Rodriguez-Lopez, J.; Sanford, M. *J. Am. Chem. Soc.* **2015**, *137*, 14465. Research in the Sanford group

A.B. Chemistry: Yale University, 1996 (Bob Crabtree)

PhD. Chemistry: Caltech, 2001 (Bob Grubbs)

Postdoc: Princeton University, 2008 (Jay Groves)

Bourm J.; Camasso, N.; Sanford, M. *J. Am. Chem. Soc.* **2015**, *137*, 8034. Mossine, A.; Brooks, A.; Makaravage, K.; Miller, J.; Ichiishi, N.; Sanford, M. *Org. Lett.* **2015**, *17*, 5780. Sevov, C.; Brooner, R.; Chenard, E.; Assary, R.; Moore, J.; Rodriguez-Lopez, J.; Sanford, M. *J. Am. Chem. Soc.* **2015**, *137*, 14465.

Why would we want to access high valent palladium?

facile reductive elimination

unique reactivity

Why would we want to access high valent palladium?

Hickman, A.; Sanford, M. Nature, 2012, 484, 177.

Why would we want to access high valent palladium?

C-X reductive elimination is unfavorable for most Pd^{II}

C–X and C–CF₃ reductive elimination are challenging from low-valent Pd

Why would we want to access high valent palladium?

C–X and C–CF₃ reductive elimination are challenging from low-valent Pd

Most Pd⁰/Pd¹¹ transformations involve C–X bond breaking, not forming

Why would we want to access high valent palladium?

■ C–X and C–CF₃ reductive elimination are challenging from low-valent Pd

Most Pd⁰/Pd^{II} transformations involve C–X bond breaking, not forming

Therefore, if we want to make halogenated or CF₃-containing products, we need high-valent Pd

Hickman, A.; Sanford, M. Nature, 2012, 484, 177.

Design elements

mechanistic studies revealed that oxidation of dimer is rate-limiting

rate of reaction could be increased with more reactive acylating reagents

Literature precedent: aryl diazonium reagents

room temperature activation

aryl radical generation

nitrogen as byproduct

Proposed mechanism

Kalyani, D.; McMurtrey, K.; Neufeldt, S.; Sanford, M. J. Am. Chem. Soc. 2011, 133, 18566.

Scope of arylpyridine

Scope of directing group

Scope of aryldiazonium

C–*H* activation with diaryliodonium reagents

Can we apply these principles towards C–H activation with diaryliodonium reagents?

Neufeldt, S.; Sanford, M. Adv. Synth. Catal. 2012, 354, 3517.
Kalyani, D.; Deprez, N.; Desai, L.; Sanford, M. J. Am. Chem. Soc. 2005, 127, 7330.
Kalyani, D.; McMurtrey, K.; Neufeldt, S.; Sanford, M. J. Am. Chem. Soc. 2011, 133, 18566.

C–*H* activation with diaryliodonium reagents

Neufeldt, S.; Sanford, M. Adv. Synth. Catal. 2012, 354, 3517.
Scope of directing group

Neufeldt, S.; Sanford, M. Adv. Synth. Catal. 2012, 354, 3517.

Scope of diaryliodonium reagents

Neufeldt, S.; Sanford, M. Adv. Synth. Catal. 2012, 354, 3517.

Comparison of C–H arylation scopes

orthogonal and complementary scopes

Neufeldt, S.; Sanford, M. Adv. Synth. Catal. 2012, 354, 3517.

Further directions in the Sanford group

Three main areas of radical-based palladium chemistry

University of Michigan

WWU Münster

Chapel Hill

Three main areas of radical-based palladium chemistry

WWU Münster

Chapel Hill

University of Michigan

Research in the Glorius group

Pinkert, T.; Das, M.; Schrader, M.; Glorius, F. J. Am. Chem. Soc. 2021, 143, 7648.
Huang, H.; Bellotti, P.; Chen, P.; Houk, K.; Glorius, F. Nature Synth. 2022, 1, 59.
Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C.; Glorius, F. Nature Cat. 2020, 3, 48.
Wiesenfeldt, M.; Moock, D.; Paul, D.; Glorius, F. Chem. Sci. 2021, 12, 5611.

Research in the Glorius group

A.B. Chemistry: University of Hannover, 1997 (H. M. R. Hoffmann)

PhD. Chemistry: University of Basel, 2000 (Andreas Pfaltz)

Postdoc: Harvard University, 2001 (David Evans)

Pinkert, T.; Das, M.; Schrader, M.; Glorius, F. J. Am. Chem. Soc. 2021, 143, 7648.
Huang, H.; Bellotti, P.; Chen, P.; Houk, K.; Glorius, F. Nature Synth. 2022, 1, 59.
Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C.; Glorius, F. Nature Cat. 2020, 3, 48.
Wiesenfeldt, M.; Moock, D.; Paul, D.; Glorius, F. Chem. Sci. 2021, 12, 5611.

Scope of decarboxylative cross-coupling

Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quak, L.; Daniliuc, C.; Glorius, F. Chem. Eur. J. 2018, 24, 4552.

Scope of decarboxylative cross-coupling

Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quak, L.; Daniliuc, C.; Glorius, F. Chem. Eur. J. 2018, 24, 4552.

Tethered olefin scope of dicarbofunctionalization

Tethered olefin scope of dicarbofunctionalization

Koy, M.; Bellotti, P.; Katzenburg, F.; Daniliuc, C.; Glorius, F. Angew. Chem. Int. Ed. 2020, 59, 2375.

Tethered olefin scope of dicarbofunctionalization

This method can form two adjacent, all-carbon quaternary centers in good yields!

Radical allylic substitution

Scope of allylic substitution

Huang, H.; Koy, M.; Serrano, E.; Pfluger, P.; Schwarz, J.; Glorius, F. Nature Catal. 2020, 3, 393.

Scope of allylic substitution: complex examples

Huang, H.; Koy, M.; Serrano, E.; Pfluger, P.; Schwarz, J.; Glorius, F. Nature Catal. 2020, 3, 393.

Scope of allylic substitution: cascade reactions

overall 59 examples

Iate stage functionalization

Mechanistic considerations

UV-vis

Of the reactants, Pd(PPh₃) is the only light absorbing species

Mechanistic considerations

Stern-Volmer

Photoexcited Pd^o can reduce the redox active ester through SET

Huang, H.; Koy, M.; Serrano, E.; Pfluger, P.; Schwarz, J.; Glorius, F. Nature Catal. 2020, 3, 393.

combining a variety of the mechanisms we've discussed thus far allows for unique three-component reactions

Huang, H.; Bellotti, P.; Pfluger, P.; Schwarz, J.; Heidrich, B.; Glorius, F. *J. Am. Chem. Soc.* **2020**, *142*, 10173. Bellotti, P.; Koy, M.; Gutheil, C.; Heuvel, S.; Glorius, F. *Chem. Sci.* **2021**, *12*, 1810.

Three-component coupling

Stage 3: addition to diene

Three main areas of radical-based palladium chemistry

University of Michigan

WWU Münster

Chapel Hill

Three main areas of radical-based palladium chemistry

A.B. Chemistry: Harvard University, 2001 (Amir Hoveyda)

PhD. Chemistry: Princeton University, 2006 (Erik Sorensen)

Postdoc: Yale and University of Illinois, 2008 (John Hartwig)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mizoroki-Heck carbocyclizations

Challenges of 2e- activation of alkyl electrophiles

Bloome, K.; Alexanian, E. J. Am. Chem. Soc. 2010, 132, 12823.

Challenges of 2e- activation of alkyl electrophiles

Bloome, K.; Alexanian, E. J. Am. Chem. Soc. 2010, 132, 12823.

Carbonylative cyclization Mechanism

Carbocyclization: an unexpected result

This result shows the feasibility of Heck-type carbocyclizations using radical-based Pd chemistry

Bloome, K.; Alexanian, E. J. Am. Chem. Soc. **2010**, *132*, 12823. Bloome, K.; McMahen, R.; Alexanian, E. J. Am. Chem. Soc. **2011**, *133*, 20146.

Carbocyclization

Bloome, K.; Alexanian, E. J. Am. Chem. Soc. **2010**, *132*, 12823. Bloome, K.; McMahen, R.; Alexanian, E. J. Am. Chem. Soc. **2011**, *133*, 20146.

Mizoroki-Heck carbocyclizations

Palladium: a versatile element

57 La Lanthanum 138.90547	58 Cee Cerium 140.116	59 Pr Praseodymium 140.90766	60 Neodymium 144.242	61 Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.964	64 Gadolinium 157.25	65 Tb Terbium 158.92535	66 Dy Dysprosium 162.500	67 HO Holmium 164.93033	68 Erbium 167,259	69 Tm Thulium 168.93422	70 Yb Ytterbium 173.045	71 Lu Lutetium 174.9668
89 Actinium	⁹⁰ Th	Protactinium	92 Uranium	93 Np Neptunium	Plutonium	95 Americium	96 Cm Curium	97 Bk Berkelium	98 Californium	99 Es Einsteinium	Fermium	101 Mendelevium	Nobelium	Lawrencium

interconversion between diverse oxidation states

versatile and widely used in cross coupling

utilized in natural product synthesis, agrochemistry, and pharmaceutical production

Questions?

