Formation and Reactivity of N–Centered Radicals

Amy Chan

MacMillan Research Group

Group Meeting

March 2nd, 2021

Early Application of N-Centered Radicals

Hoffmann-Loffler-Freytag cyclization

Application of N-Centered Radicals in Enamine Catalysis

Classification of N-Centered Radicals

Generation of N-Centered Radicals

Generation of N-Centered Radicals

Generation of N-Centered Radicals

Outline

• Aminating reagents, forming sp^3 and sp^2 C–N bonds

• HAT reagents for sp³ C–H functionalization, due to large BDEs of N–H bonds (up to 110 kcal/mol)

• Fragmentation (β -scission) is possible, but not universal

- A. Formation of *sp*³ C–N bonds: intramolecular cyclization
- B. Formation of sp^3 C–N bonds: addition to olefins
- C. Formation fo sp^2 C–N bonds: addition to aromatic compounds
- D. *N*-centered radicals-mediated HAT of *sp*³ C–H bonds
- E. Fragmentation of N-centered radicals

Outline

• Aminating reagents, forming sp^3 and sp^2 C–N bonds

• HAT reagents for sp³ C–H functionalization, due to large BDEs of N–H bonds (up to 110 kcal/mol)

• Fragmentation (β -scission) is possible, but not universal

A. Formation of *sp*³ C–N bonds: intramolecular cyclization

- B. Formation of sp^3 C–N bonds: addition to olefins
- C. Formation fo sp^2 C–N bonds: addition to aromatic compounds
- D. *N*-centered radicals-mediated HAT of *sp*³ C–H bonds
- E. Fragmentation of *N*-centered radicals

Amidyl Radical Cyclization: From Free N–H Compounds

Amidyl Radical Cyclization: From Free N–H Compounds

Miller, D. C.; Choi, G. J.; Orbe, H. S., Knowles, R. R. J. Am. Chem Soc. 2015, 137, 13492.

Amidyl Radical Cyclization: Enantioselective Hydroamination

Roos, C. B.; Demaerel, J.; Graff, D. E.; Knowles, R. R. J. Am. Chem. Soc. 2020, 142, 5974.

Amidyl Radical Cyclization: Enantioselective Hydroamination

Amidyl Radical Cyclization: Reductive N–O Cleavage

radical anion

Amidyl Radical Cyclization: Reductive N–O Cleavage

Iminyl Radical Cyclization: Oxidative N–O Cleavage

Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem. Int. Ed. 2017, 56, 13361.

Iminyl Radical Cyclization: Oxidative N–O Cleavage

Davies, J.; Sheikh, N. S.; Leonori, D. *Angew. Chem. Int. Ed.* **2017**, *56*, 13361. Jiang, H.; Studer, A. *Angew. Chem. Int. Ed.* **2017**, *56*, 12273.

Outline

• Aminating reagents, forming sp^3 and sp^2 C–N bonds

• HAT reagents for sp³ C–H functionalization, due to large BDEs of N–H bonds (up to 110 kcal/mol)

• Fragmentation (β -scission) is possible, but not universal

- A. Formation of *sp*³ C–N bonds: intramolecular cyclization
- B. Formation of sp^3 C–N bonds: addition to olefins
- C. Formation fo sp^2 C–N bonds: addition to aromatic compounds
- D. *N*-centered radicals-mediated HAT of *sp*³ C–H bonds
- E. Fragmentation of *N*-centered radicals

Intermolecular Hydroamination Using Secondary Alkyl Amines

Musacchio, A. J.; Lainhart, B. C.; Zhang, X.; Naguib, S. G.; Sherwood, T. C.; Knowles, R. R. Science 2017, 355, 727.

Intermolecular Hydroamination Using Secondary Alkyl Amines

Musacchio, A. J.; Lainhart, B. C.; Zhang, X.; Naguib, S. G.; Sherwood, T. C.; Knowles, R. R. Science 2017, 355, 727.

Intermolecular Hydroamination Using Primary Alkyl Amines

Miller, D. C.; Ganley, J. M.; Musacchio, A. J.; Sherwood, T. C.; Ewing, W. R.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 16590.

Intermolecular Hydroamination Using Primary Alkyl Amines

Miller, D. C.; Ganley, J. M.; Musacchio, A. J.; Sherwood, T. C.; Ewing, W. R.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 16590.

Intermolecular Hydroamination Using Primary Alkyl Amines

Miller, D. C.; Ganley, J. M.; Musacchio, A. J.; Sherwood, T. C.; Ewing, W. R.; Knowles, R. R. J. Am. Chem. Soc. 2019, 141, 16590.

Incorporating Unprotected NH₂: Aminochlorination of Olefins

Legnani, L.; Prina-Cerai, G.; Delcaillau, T.; Willems, S.; Morandi, B. *Science* **2018**, *362*, 434. Minisci, F.; Galli, R. *Tetrahedron Lett.* **1965**, *22*, 1679

Incorporating Unprotected NH₂: Aminochlorination of Olefins

Incorporating Unprotected NH₂: Aminochlorination of Olefins

Legnani, L.; Prina-Cerai, G.; Delcaillau, T.; Willems, S.; Morandi, B. Science 2018, 362, 434.

Incorporating Alkyl Amines in Aminochlorination of Olefins

Incorporating Unprotected NH₂: Aminoazidation of Olefins

Outline

• Aminating reagents, forming sp^3 and sp^2 C–N bonds

• HAT reagents for sp³ C–H functionalization, due to large BDEs of N–H bonds (up to 110 kcal/mol)

• Fragmentation (β -scission) is possible, but not universal

- A. Formation of *sp*³ C–N bonds: intramolecular cyclization
- B. Formation of sp^3 C–N bonds: addition to olefins
- C. Formation fo sp^2 C–N bonds: addition to aromatic compounds
- D. *N*-centered radicals-mediated HAT of *sp*³ C–H bonds
- E. Fragmentation of N-centered radicals

Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Nat. Chem. 2019, 11, 426.

88% yield 13.4 : 2 : 1

33% yield 2.3 : 1.6 : 1

Legnani, L.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162.

From Robitussin

51% yield

Ham, W. S.; Hillenbrand, J.; Jacq, J.; Genicot, C.; Ritter T. Angew. Chem. Inte. Ed. 2019, 58, 532.

Rössler, S. L.; Jelier, B. J.; Tripet, P. F.; Shemet, A.; Jeschke, G.; Togni, A.; Carreira, E. M. Angew. Chem. Int. Ed. 2019, 58, 526.

Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279.

Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.

Outline

• Aminating reagents, forming sp^3 and sp^2 C–N bonds

• HAT reagents for sp³ C–H functionalization, due to large BDEs of N–H bonds (up to 110 kcal/mol)

• Fragmentation (β -scission) is possible, but not universal

- A. Formation of *sp*³ C–N bonds: intramolecular cyclization
- B. Formation of sp^3 C–N bonds: addition to olefins
- C. Formation fo sp^2 C–N bonds: addition to aromatic compounds
- D. *N*-centered radicals-mediated HAT of *sp*³ C–H bonds
- E. Fragmentation of N-centered radicals

Choi, G, J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.

Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272.

Amidyl Radical as HAT Reagent for Intermolecular sp³ C–H Functionalization

Choi, G, J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.

Amidyl Radical as HAT Reagent: C–H Bromination

Schmidt, V. A.; Quinn, R. K.; Brusoe, A. T.; Alexanian, E. J. J. Am. Chem. Soc. 2014, 136, 14389.

Amidyl Radical as HAT Reagent: C–H Bromination

Amidyl Radical as HAT Reagent: C–H Chlorination

Quinn, R. K. et al., J. Am. Chem. Soc. 2016, 138, 696.

Amidyl Radical as HAT Reagent: C–H Xanthylation

Czaplyski, W. L.; Na, C. G.; Alexanian, E. J. *J. Am. Chem. Soc.* **2016**, *138*, 13854. Williamson, J. B.; Czaplyski, W. L.; Alexanian, E. J.; Leibfarth, F. A. *Angew. Chem. Int. Ed.* **2018**, *57*, 6261.

Outline

• Aminating reagents, forming sp^3 and sp^2 C–N bonds

• HAT reagents for sp³ C–H functionalization, due to large BDEs of N–H bonds (up to 110 kcal/mol)

• Fragmentation (β -scission) is possible, but not universal

- A. Formation of *sp*³ C–N bonds: intramolecular cyclization
- B. Formation of sp^3 C–N bonds: addition to olefins
- C. Formation fo sp^2 C–N bonds: addition to aromatic compounds
- D. *N*-centered radicals-mediated HAT of *sp*³ C–H bonds
- E. Fragmentation of N-centered radicals

Fragmentation of N-Radicals: *β*-Scission of Iminyl Radical

Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem. Int. Ed. 2018, 57, 744.

Fragmentation of N-Radicals: β-Scission of Aminyl Radical Cation

Wang, J.; Zheng, N. Angew. Chem. Int. Ed. 2015, 54, 11424.

Fragmentation of N-Radicals: β-Scission of Aminyl Radical Cation

Harmata, A. S.; Sowden, M. J.; Stephenson, C. R. J. ChemRxiv. doi: 10/26434/chemrxiv.13118528.v1

Fragmentation of N-Radicals: β-Scission of Aminyl Radical Cation

Harmata, A. S.; Sowden, M. J.; Stephenson, C. R. J. ChemRxiv. doi: 10/26434/chemrxiv.13118528.v1

Summary

- A. Formation of sp^3 C–N bonds: intramolecular cyclization
- B. Formation of sp^3 C–N bonds: addition to olefins
- C. Formation fo sp^2 C–N bonds: addition to aromatic compounds
- D. *N*-centered radicals-mediated HAT of *sp*³ C–H bonds
- E. Fragmentation of N-centered radicals

Seminal reviews:

"Photocatalytic Generation of Aminium Radical Cations for C–N Bond Formation" Ganley, J. M.; Murray,

P. R. D.; Knowles, R. R. ACS Catal. 2020, 10, 11712–11738.

• "Recent advances in visible-light photoredox-catalyzed nitrogen radical cyclization" Wang, P.; Zhang,

Q.; Xiao, W.; Chen, J. Green Synthesis and Catalysis 2020, 1, 42–51.

"Chemistry with *N*-Centered Radicals Generated by Single-Electron Transfer-Oxidation Using

Photoredox Catalysis" Jiang, H.; Studer, A. CCS Chem. 2019, 1, 38–49.

"Hydroxylamine Derivatives as Nitrogen-Radical Precursors in Visible-Light Photochemistry" Davies,

J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem. Eur. J. 2018, 24, 12154–12163.

"Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals:

Methodology Developments and Catalytic Applications" Kärkäs, M. D. ACS Catal. 2017, 7, 4999–5002.