Applications and Synthesis of Deuterium-Labeled Compounds

Christopher Prier MacMillan Group Meeting February 27, 2014

Deuterium: A Stable Isotope of Hydrogen

Harold C. Urey

- 1932: Urey, Brickwedde, and Murphy report spectroscopic evidence for heavy hydrogen
- 1933: Lewis and MacDonald isolate a pure sample of deuterium oxide (D_2O)
- Urey awarded the Nobel Prize for his discovery in 1934; coins the name "deuterium"
- Deuterium now broadly employed in organic chemistry, organometallic chemistry, enzymology, spectroscopy, pharmacology, and many other fields

The Kinetic Isotope Effect

KIE is the observation that isotopically substituted molecules react at different rates: $k_{\rm H} \neq k_{\rm D}$

- Vibrational energy of a bond is dependent on the reduced mass of the two atoms (μ)
- Larger activation energy for C–D bond homolysis than for C–H bond homolysis

Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, 2006.

The Equilibrium Isotope Effect

The distribution of deuterium in an equilibrium is determined by a thermodynamic isotope effect

Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, University Science Books: Sausalito, 2006.

Applications of Deuterated Compounds

Elucidation of biosynthetic pathways

Total synthesis: alter reaction selectivity

Internal standards for mass spectrometry

Enhance metabolic stability of a drug

And many more!

Applications of Deuterated Compounds

Study of reaction mechanisms

Elucidation of biosynthetic pathways

Total synthesis: alter reaction selectivity

Internal standards for mass spectrometry

Enhance metabolic stability of a drug

And many more!

Deuterium in the Total Synthesis of Norzoanthamine

Introduction of deuterium suppresses an undesired pathway via the kinetic isotope effect

Applications of Deuterated Compounds

Study of reaction mechanisms

Elucidation of biosynthetic pathways

Total synthesis: alter reaction selectivity

Internal standards for mass spectrometry

Enhance metabolic stability of a drug

And many more!

Deuterium Effects in Drug Metabolism

Deuteration has the potential to impact a drug's stability when metabolism involves cleavage of a C-H bond

- Deuteration typically has no effect on biological potency or selectivity
- Potential for a drug to have a longer half-life or reduced/less frequent dosing
- Improve metabolite profile: prevent formation of toxic metabolites or those that inhibit CYP
- To date there are no approved deuterium-enriched pharmaceuticals

Foster, A. B. *Trends Pharmacol. Sci.* **1984**, *5*, 524. Kushner, D. J.; Baker, A.; Dunstall, T. G. *Can. J. Physiol. Pharmacol.* **1999**, *77*, 79. Harbeson, S. L.; Tung, R. D. *Annu. Rep. Med. Chem.* **2011**, *46*, 403. Meanwell, N. A. *J. Med. Chem.* **2011**, *54*, 2529.

Metabolism and Deuteration of Tamoxifen

Tamoxifen forms adducts with DNA in rats, leading to liver cancer; proposed to proceed via quinone methide

Phillips, D. H.; Potter, G. A.; Horton, M. N.; Hewer, A.; Crofton-Sleigh, C.; Jarman, M.; Venitt, S. *Carcinogenesis* **1994**, *15*, 1487. Jarman, M.; Poon, G. K.; Rowlands, M. G.; Grimshaw, R. M.; Horton, M. N.; Potter, G. A.; McCague, R. *Carcinogenesis* **1995**, *16*, 683.

Metabolism of Efavirenz

Metabolism of efavirenz to a toxic metabolite in rats involves a propargylic oxidation of the cyclopropane

metabolite responsible for nephrotoxicity

Mutlib, A. E.; Gerson, R. J.; Meunier, P. C.; Haley, P. J.; Chen, H.; Gan, L. S.; Davies, M. H.; Gemzik, B.; Christ, D. D. et al. Toxicol. Appl. Pharmacol. 2000, 169, 102.

Metabolism of Efavirenz

Installation of a single deuterium atom at the site of propargylic oxidation reduces toxic metabolite formation

Mutlib, A. E.; Gerson, R. J.; Meunier, P. C.; Haley, P. J.; Chen, H.; Gan, L. S.; Davies, M. H.; Gemzik, B.; Christ, D. D. et al. Toxicol. Appl. Pharmacol. 2000, 169, 102.

Deuteration of Telaprevir

Telaprevir undergoes epimerization in vivo to its less potent (R)-epimer

Maltais, F.; Jung, Y. C.; Chen, M.; Tanoury, J.; Perni, R. B.; Mani, N.; Laitinen, L.; Huang, H.; Liao, S.; Gao, H. et al. J. Med. Chem. 2009, 52, 7993.

Deuteration of Telaprevir

Telaprevir undergoes epimerization in vivo to its less potent (R)-epimer

telaprevir

- Vertex, Johnson & Johnson
- Hepatitis C protease inhibitor

- As efficacious as protio-telaprevir in protease inhibition and viral replication assays
- Significantly more resistant to epimerization (k_H/k_D ≈ 5)
- ~13% increase in AUC in rats

Deuterated Drugs in Clinical Trials

SD-809

- In Phase III for treatment of chorea associated with Huntingdon's disease
- Deuterated analog of tetrabenazine

CTP-499

- In Phase II for diabetic nephropathy
- Deuterated analog of the active metabolite of pentoxifylline
- Phosphodiesterase inhibitor

Approaches to the Synthesis of Labeled Compounds

Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem. Int. Ed. 2007, 46, 7744.

Synthesis of Deuterated Compounds

Deuterated compounds (especially internal standards) ideally possess a narrow isotopic distribution

Synthesis of Deuterated Reagents

The source of all deuterium-enriched material is deuterium oxide (D_2O)

Kluger, R. *J. Org. Chem.* **1964**, *29*, 2045. Paulsen, P. J.; Cooke, W. D. *Anal. Chem.* **1963**, *35*, 1560.

Iridium-Catalyzed H/D Exchange

A cationic iridium trihydride complex catalyzes the H/D exchange of arenes, cyclic alkenes

Yung, C. M.; Skaddan, M. B.; Bergman, R. G. *J. Am. Chem. Soc.* **2004**, *126*, 13033. Skaddan, M. B.; Yung, C. M.; Bergman, R. G. *Org. Lett.* **2004**, *6*, 11.

Mechanism of Iridium-Catalyzed H/D Exchange

Yung, C. M.; Skaddan, M. B.; Bergman, R. G. *J. Am. Chem. Soc.* **2004**, *126*, 13033. Skaddan, M. B.; Yung, C. M.; Bergman, R. G. *Org. Lett.* **2004**, *6*, 11.

Iridium-Catalyzed Ortho H/D Exchange

Iridium catalysts promote selective ortho-deuteration via the formation of five-membered metallacycles

Heys, R. J. Chem. Soc., Chem. Commun. **1992**, 680. Shu, A. Y. L.; Chen, W.; Heys, J. R. J. Organomet. Chem. **1996**, 524, 87.

Ortho-Selective Deuteration of Arenes

Palladium-catalyzed ortho-deuteration of arenes bearing weakly coordinating directing groups

Ma, S.; Villa, G.; Thuy-Boun, P. S.; Homs, A.; Yu, J.-Q. Angew. Chem. Int. Ed. 2014, 53, 734.

Ortho-Selective Deuteration of Arenes

Palladium-catalyzed ortho-deuteration of arenes bearing weakly coordinating directing groups

Ma, S.; Villa, G.; Thuy-Boun, P. S.; Homs, A.; Yu, J.-Q. Angew. Chem. Int. Ed. 2014, 53, 734.

Vinyl H/D Exchange by an Iridium-Pincer Complex

Selective deuteration of vinyl groups is achieved with an iridium catalyst bearing an aliphatic pincer ligand

Zhou, J.; Hartwig, J. F. Angew. Chem. Int. Ed. 2008, 47, 5783.

Vinyl H/D Exchange by an Iridium-Pincer Complex

Vinyl H/D Exchange by an Iridium-Pincer Complex

Selective deuteration of vinyl groups by an iridium catalyst bearing an aliphatic pincer ligand

α -Deuteration of Amines and Alcohols

Ru-catalyzed α -deuteration of amines and alcohols proceeds via a "borrowing hydrogen" mechansim

Takahashi, M.; Oshima, K.; Matsubara, S. Chem. Lett. 2005, 34, 192.

α -Deuteration of Amines and Alcohols

I Ru-catalyzed α -deuteration of amines and alcohols proceeds via a "borrowing hydrogen" mechansim

Takahashi, M.; Oshima, K.; Matsubara, S. Chem. Lett. 2005, 34, 192.

Selective α,β -Deuteration of Amines

The Shvo catalyst enables the selective α,β -deuteration of amines using deuterium oxide

Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. J. Am. Chem. Soc. 2012, 134, 12239.

Mechanism of Amine α , β -Deuteration by the Shvo Catalyst

Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. J. Am. Chem. Soc. 2012, 134, 12239.

α,β -Deuteration of Complex Amine-Containing Molecules

Conditions: 10 mol% Shvo catalyst, *i*-PrOD-d₈ or *t*-BuOD, toluene, microwave heating, 150 °C

Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. J. Am. Chem. Soc. 2012, 134, 12239.

Heterogeneous Metal Catalysis for H/D Exchange

Palladium-based catalyst systems preferentially deuterate aliphatic C–H bonds; platinum catalyst systems show selectivity for deuteration of aryl C–H bonds

Sajiki, H.; Ito, N.; Esaki, H.; Maesawa, T.; Maegawa, T.; Hirota, K. Tetrahedron Lett. 2005, 46, 6995.

Selectivity for benzylic H/D exchange can be obtained under less forcing conditions

Sajiki, H.; Aoki, F.; Esaki, H.; Maegawa, T.; Hirota, K. Org. Lett. 2004, 6, 1485.

Tritium-Labeling of Organic Molecules

Methods developed for deuteration are often also applicable to the installation of tritium $(^{3}_{1}H, T)$

Shu, A. Y. L.; Saunders, D.; Levinson, S. H.; Landvatter, S. W.; Mahoney, A.; Senderoff, S. G.; Mack, J. F.; Heys, J. R. J. Labelled Cpd. Radiopharm. 1999, 42, 797.

8.37 mCi [T]warfarin

Skaddan, M. B.; Yung, C. M.; Bergman, R. G. Org. Lett. 2004, 6, 11.