Inverted Ligand Fields What is The Deal With Copper(III)?

MacMillan Group Meeting June 15th, 2020 Cesar Nicolas Prieto Kullmer

Outline of Talk

Bonding Models of Coordination Complexes and Their Pitfalls — What are Inverted Ligand Fields?

Early Experimental and Computational Evidence for Inverted Ligand Fields

Copper (III) Complexes — Theoretical and Experimental Analysis of their Electronic Structure

The Implications of Inverted Ligand Fields for Organometallic Complex Reactivity

Outline of Talk

Bonding Models of Coordination Complexes and Their Pitfalls — What are Inverted Ligand Fields?

Early Experimental and Computational Evidence for Inverted Ligand Fields

Copper (III) Complexes — Theoretical and Experimental Analysis of their Electronic Structure

The Implications of Inverted Ligand Fields for Organometallic Complex Reactivity

Crystal Field Theory

Ligand Field Theory

factors in ALL metal orbitals and ALL ligand orbitals

complete MO diagram

MO Shape and Composition

Oxidation State Formalism

What if combined ligand contributions outweigh metal?

IUPAC. *Compendium of Chemical Terminology*, 2nd ed.; Blackwell Scientific Publications: Oxford, 1997. Owens, J.; Stevens, K. W. H. *Nature* **1953**, 71, 836. Jørgensen, K. *Coord. Chem. Rev.* **1966**, 1, 164-178. What is an inverted ligand field?

inverted ligand fields show abnormnal MO orderings and compositions

HOMO and LUMO are ligand-based rather than metal-based

electrons do not reside on atoms as one would expect from oxdiation state formalism

What is an inverted ligand field?

 $M = 6 e^-$ normal MO diagram $L = 12 e^-$

 $M = 10 e^{-}$ inverted MO diagram $L = 8 e^{-}$

only some MOs switch their order

the metal—centered MOs change their identity

Approaches to Ligand Field Inversion

Outline of Talk

Bonding Models of Coordination Complexes and Their Pitfalls — What are Inverted Ligand Fields?

Early Experimental and Computational Evidence for Inverted Ligand Fields

Copper (III) Complexes — Theoretical and Experimental Analysis of their Electronic Structure

The Implications of Inverted Ligand Fields for Organometallic Complex Reactivity

Early Evidence – KAgF₄

Solid containing formally Ag(III):

■ Ag-F bonding (-6.5 to -9.0 eV): dominant Ag d-orbital contribution

■ Ag-F anti bonding (-0.7 eV): excess F 2p-orbital contribution

... classical picture used for ionic inorganic compounds ... an ionic formulation of KAgF⁴ as $K^{I}Ag^{III}(F^{-})_{4}$, must be modified in this case...

Early Evidence – [Ni(SnPh₃)(np₃)]⁺

- [Ni(np₃)] known to exist independtly as stable complex
- donor—acceptor relationship between Ni and Sn inverted (σ-SnPh₃ ~ 2eV higher than 2a₁)
- metal is best described as d¹⁰ w/ SnPh₃⁺ ligand

 $\sigma\text{-noninnocence:}$ ambiguity on which atom is acting as the donor

- $\sigma_1 NH_2$, z^2 bonding
- $\sigma_2 p_z$, CH₃ bonding +NH₂, z² antibonding
- $\pmb{\sigma_3} p_z, \, CH_3$ antibonding +NH_2, z^2 antibonding

- Modulation of Co-N distance affects propensity metal to undergo inner-sphere e⁻ transfer
- Intermediate Co-N distance shows avoided crossing at longer Co-C distances (allows for Co-C homolysis)

Computational Investigation of d¹⁰

Roald Hoffmann

Using EH_3 (E = N, P, As, Sb, Bi,) M = Ni, Pd, Pt:

Inherent instability (decay into ML₂ + 2L) limits combinations to local minima Donor ability of ligand does not correlate w/ electropositivity (inert electron pair effect) Varying metal did not return clear result due to realitites of atomic orbital energies

• Using $L = X^-$, PH_3 $M = Zn^{2+}$:

	[ZnF ₄] ^{2—}			[Zn(PH ₃) ₄](BF ₄) ₂		
orbital	energy(eV)	%Zn	%F	energy(eV)	%Zn	%L
2t ₂	0.87	16	84	-11.03	8	92
1a ₁	-1.70	19	81	—14.13	46	54
1e	-2.86	92	8	–17.73	99	1
1t ₂	—3.14	82	18	-17.79	96	4

Inversion with a true transition metal

Inversion with a true transition metal

Outline of Talk

Bonding Models of Coordination Complexes and Their Pitfalls — What are Inverted Ligand Fields?

Early Experimental and Computational Evidence for Inverted Ligand Fields

Copper (III) Complexes — Theoretical and Experimental Analysis of their Electronic Structure

The Implications of Inverted Ligand Fields for Organometallic Complex Reactivity

The Snyder Hypothesis

The Snyder Hypothesis – Backlash

... Snyder has confused two important but fundamentally different concepts: the formal oxidation state, and partial charges as obtained, for example, from population analysis ...

■ interprets filled d—orbitals as signs of Cu—C covalency

■ invokes square—planar geometry as tell-tale sign of normal ligand field

Kraupp, M.; von Schnering, H. G. Angew. Chem. int. Ed. 1995, 34, 986.

... designation of a formal oxidation state is entirely arbitrary ...uncritical application of the resulting oxidation values can lead to confusing and physically unrealistic descriptions for organic, organometallic. and inorganic species alike ...

■ interprets high ionic bonding as sign that electrons do reside in d—orbitals

■ ascribes copper a d¹⁰ configuration and a NONFORMAL Cu(I) oxidation state

Snyder, J. P. Angew. Chem. int. Ed. 1995, 34, 986–987.

Comparing [Cu(CF₃)₄]ⁿ

20 years later ...

- geometry defined by higher energy, ligand—based orbitals
- Cu(I) shows IFL when forced into D_{2d} symmetry

Ligand geometry influences ligand field inversion

Hoffmann, R.; et. al. Chem. Rev. 2016, 116, 8173-8192.

Ligand Oxidation in [Cu(CF₃)₄]⁻⁻

Combined Computational Evidence

[Cu(CF₃)₄]⁻ has an inverted ligand field and mainly ligand—centered FMOs

Energetics and Ligand Geometry support the existence of a CF_3^+ ligand in the coordination sphere

Coordination geometry influences ligand field inversion due to inter-ligand interactions

How can we prove this experimentally?

Hoffmann, R.; et. al. *Chem. Rev.* **2016**, 116, 8173–8192. Romine, A. M.; et. al. *Angew. Chem. Int. Ed.* **2015**, 54, 2745–2749.

Combined Computational Evidence

[Cu(CF₃)₄]⁻ has an inverted ligand field and mainly ligand-centered FMOs

Energetics and Ligand Geometry support the existence of a CF₃⁺ ligand in the coordination sphere

Coordination geometry influences ligand field inversion due to inter-ligand interactions

How can we prove this experimentally?

Hoffmann, R.; et. al. *Chem. Rev.* **2016**, 116, 8173–8192. Romine, A. M.; et. al. *Angew. Chem. Int. Ed.* **2015**, 54, 2745–2749.

Synchrotron-based X-Ray Spectroscopy — A Primer

- relies on electronic excitation from core orbitals (e.g. 1s, 2s, 2p)
- element-specific orbital energy separations provide molecular/electronic information
- can focus on absorption (XAS) or emission (XES)
- requires access to synchrotron light source

ALBA synchrotron (Cerdanyola del Vallés)

Synchrotron Radiation

Radiation that occurs when charged particles are accelerated in a curved path

$$P = \frac{2Ke^2}{3c^3} \left[\gamma^2 \frac{v^2}{r} \right]^2 = \frac{2Ke^2 \gamma^4 v^4}{3c^3 r^2}$$

Edges in Core Spectroscopy

Synchrotron-based X-Ray Spectroscopy — A Primer

Experimental Verification of the IFL in [Cu(CF₃)₄]

Inverted d¹⁰ favors D_{4h} over T_d in angular overlap approximations of MOs

- UV-vis should show d-d band in d⁸ limit not observed
- d-d band unlikely to be buried under CT band as this would imply a very large field splitting

Experimental Verification of the IFL in [Cu(CF₃)₄]

interorbital exchange interactions proportional to proximity of radial probability maxima (significant only for 2p-3d exchange)

Corrected peak at 8982 eV shows no cross peak, which excludes 1s-3d transition, and supports d^{10} assignment

Experimental Verification of the IFL in [Cu(CF₃)₄]

The Myth of d⁸Copper(III)

The Myth of d⁸Copper(III)

HN

C₆F₅

Cu-

Ribas, 2010

Furuta, 2018

C₆F₅

١Н

C₆F₅

Stack, 2002

Klemm, 1955

•Cu

Wang, 2009

Xi, 2017

Kruger, 1999

< ⊐¹⁺

Le

Lee, 2015

CF₃

ĊF₃

Liu, 2019

Klemm, 1955 61% Cu 3d

Kruger, 1998 41% Cu 3d

Stack, 2002 37% Cu 3d

Ribas, 2010

35% Cu 3d

Furuta, 2018

27% Cu 3d

Lee, 2015 24% Cu 3d

Wang, 2009

40% Cu 3d

Xi, 2017 24% Cu 3d

Liu, 2019 26% Cu 3d

computational model can be applied to other formally copper(III) compounds

all except one show inverted ligand field

DiMucci, I. M.; et. al. J. Am. Chem. Soc. 2019, 141, 18508-18520.

Outline of Talk

Bonding Models of Coordination Complexes and Their Pitfalls — What are Inverted Ligand Fields?

Early Experimental and Computational Evidence for Inverted Ligand Fields

Copper (III) Complexes — Theoretical and Experimental Analysis of their Electronic Structure

The Implications of Inverted Ligand Fields for Organometallic Complex Reactivity

Electrophilic Reactivity of [Cu(CF₃)₄]

Some computation on S_N^2 reactivity has been done:

inverted field complexes as sources of electrophilic reactants is currently underexplored

Impact on Copper-Catalyzed Nitrene Transfer

Peroxo-Bridged Dicopper(II) Complexes

Impact on Reductive Elimination — Copper(III)

DiMucci, I. M.; et. al. J. Am. Chem. Soc. 2019, 141, 18508-18520.

Impact on Reductive Elimination — Nickel(IV)

Outline of Talk

Bonding Models of Coordination Complexes and Their Pitfalls — What are Inverted Ligand Fields?

Early Experimental and Computational Evidence for Inverted Ligand Fields

Copper (III) Complexes — Theoretical and Experimental Analysis of their Electronic Structure

The Implications of Inverted Ligand Fields for Organometallic Complex Reactivity

Copper(III) — IFLs as Periodic Trend

Bonding Models of Coordination Complexes and Their Pitfalls — What are Inverted Ligand Fields?

Early Experimental and Computational Evidence for Inverted Ligand Fields

Questions?

Copper (III) Complexes — Theoretical and Experimental Analysis of their Electronic Structure

The Implications of Inverted Ligand Fields for Organometallic Complex Reactivity