The Chemistry of Frustrated Lewis Pairs

MacMillan Group Meeting

Tracy Liu

4 December 2013

Rapid Emergence of FLP Chemistry

289 total publications in FLP chemistry

Leading Academics:

Douglas W. Stephan, University of Toronto, Canada

Gerhard Erker, Westfälische Wilhelms-Universität Münster, Germany

Imre Pápai, Chemical Research Cent. of the Hungarian Acad. of Sciences, Hungary

Brown, H. C.; Schlesinger, H. I. JACS, 1942, 64, 325-329.

No formation of classical Lewis Acid/Base adduct

Wittig, G.; Benz, E. Chem. Ber., 1959, 92, 1999-2013.

Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science, 2006, 314, 1124-1126.

Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science, 2006, 314, 1124-1126.

Chase, P.A.; Welch, G. C.; Jurca, T.; Stephan, D. W. *ACIE*, **2007**, *46*, 8050-8053. Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. *ACIE*, **2012**, *51*, 10164-10168.

Mömming, C. M.; Otten, E.; Kehr, G.; Frölich, R.; Grimme, S.; Stephan, D. W.; Erker, G. ACIE, 2009, 48, 6643-6646.

Chen, D.; Wang, Y.; Klankermeyer, J. ACIE, 2010, 49, 9475-9578.

and Storage of Small Molecules

Two Competing Models on the Mechanism of H₂ Activation

Initial Hypotheses on the Mechanism of H_2 Activation

Welch, C.; Stephan, D. W. JACS, 2007, 129, 1880-1881.

Initial Hypotheses on the Mechanism of H₂ Activation

Welch, C.; Stephan, D. W. JACS, 2007, 129, 1880-1881.

First DFT Study on the Mechanism of H₂ Activation

Multiple H-bonds between C–H---F groups give rise to a preorganized complex

■ Non-directional dispersion forces between *t*Bu and C₆F₅ groups render the complex flexible

First DFT Study on the Mechanism of H₂ Activation

Located T.S. features a nearly linear P–H–H–B axis

 \blacksquare H₂ bond elongated from 0.74 A to 0.79 A indicative of an early T.S.

10.4 kcal/mol higher than tBu_3P ---B(C₆F₅)₃ + H₂

First DFT Study on the Mechanism of H₂ Activation

Discovered significant H₂ polarization

Electron transfer proceeds via simultaneous $tBu_3P \rightarrow \sigma^*(H_2)$ and $\sigma(H_2) \rightarrow B(C_6F_5)_3$ donation

First DFT Study on the Mechanism of H₂ Activation The Electron Transfer Model

Non-bonding interactions between bulky substituents lead to a higher E frustrated complex

First DFT Study on the Mechanism of H₂ Activation The Electron Transfer Model

Non-bonding interactions between bulky substituents lead to a higher E frustrated complex

Frustration energy, ΔE_t , decreases the activation energy and renders hydrogen splitting facile and highly exothermic via reactant state destabilization

First DFT Study on the Mechanism of H₂ Activation The Electron Transfer Model

Non-bonding interactions between bulky substituents lead to a higher E frustrated complex

- Frustration energy, ΔE_t , decreases the activation energy and renders hydrogen splitting facile and highly exothermic via reactant state destabilization
- Non-bonding interactions between bulky substituents stabilizes both the T.S. and product

Linear T.S. not possible for certain tethered FLPs

Calculated T.S. employing a dispersion corrected DFT model:

 $(C_6F_5)_2B$ PMes₂ + H₂

Calculated T.S. do not have a linear relationship along P-H-H-B axis

2-D potential E surface for $tBu_3P + B(C_6F_5)_3$ system

Pápai's non-dispersion corrected DFT model overestimated the P–B bond distance resulting in a T.S. that is otherwise not present

The Electric Field Model

- Neglect the FLP as a molecular species and replace it by an electric field
- Polarization from electric field generated in the interior of the FLP cavity allows for H₂ splitting

The Electric Field Model

Critical field strength needed for H_2 splitting is 0.05 - 0.06 a.u.

An Alternative Mechanism of H₂ Activation The Electric Field Model

H-bonding interactions form the FLP while non-directional dispersion forces instill flexibility allowing H₂ entry – termed the "preparation step"

Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405.

An Alternative Mechanism of H₂ Activation The Electric Field Model

- H-bonding interactions form the FLP while non-directional dispersion forces instill flexibility allowing H₂ entry – termed the "preparation step"
- Activation energy is the "preparation step"; after entrance H₂ splitting is barrierless

Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405.

An Alternative Mechanism of H₂ Activation The Electric Field Model

- H-bonding interactions form the FLP while non-directional dispersion forces instill flexibility allowing H₂ entry – termed the "preparation step"
- Activation energy is the "preparation step"; after entrance H₂ splitting is barrierless
- No molecular orbitals arguments invoked; believe this accounts for the similar reactivity of chemically different FLPs

Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405.

Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135, 4425-4437.

Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135, 4425-4437.

At the "critical field" of 0.06 a.u., the activation energy is 75 kcal/mol

Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. *ACIE*, **2010**, *49*, 1402-1405. Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. *JACS*, **2013**, *135*, 4425-4437.

- At the "critical field" of 0.06 a.u., the activation energy is 75 kcal/mol
- Only at higher electric fields, 0.09 a.u. and above, does the activation energy lower to a reasonable range (20 kcal/mol or lower)

Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. *ACIE*, **2010**, *49*, 1402-1405. Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. *JACS*, **2013**, *135*, 4425-4437.

- At the "critical field" of 0.06 a.u., the activation energy is 75 kcal/mol
- Only at higher electric fields, 0.09 a.u. and above, does the activation energy lower to a reasonable range (20 kcal/mol or lower)
- Only at field strengths above 0.1 a.u., does H₂ splitting become "barrierless"

Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. *ACIE*, **2010**, *49*, 1402-1405. Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. *JACS*, **2013**, *135*, 4425-4437.

Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135, 4425-4437.

EFs within FLP cavities are not homogeneous and are not always strong enough to effect H₂ splitting

Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135, 4425-4437.

Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135, 4425-4437.

Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135, 4425-4437.

Use of dispersion corrected DFT basis set results in a generally bent D–H–H–A geometry explained by frontier orbitals aligning themselves for optimal orbital overlap

Deviation from ideal 180° D---H₂ angle and 90° H₂---A angle due to polarization of the σ / σ^* orbitals of H₂

Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135, 4425-4437.

Catalytic hydrogenation only possible for sterically hindered imines

Catalytic hydrogenation only possible for sterically hindered imines

adduct formation between Lewis Basic product and FLP shuts down catalytic activity

Catalytic hydrogenation only possible for sterically hindered imines

Protecting Imine with $B(C_6F_5)_3$ recovers catalytic activity

Catalytic hydrogenation only possible for B(C₆F₅)₃ protected nitriles

Only the amine is isolated (cannot isolate imine)

The First Example of Catalytic Hydrogenations with FLPs

Hydrogenation of Imines, Nitriles, and Aziridines

Proton transfer precedes hydride delivery

Increased rates with electron rich imines (R = tBu, 1 hr vs. $R = SO_2Ph$, >10 hrs)

The First Example of Catalytic Hydrogenations with FLPs

Hydrogenation of Imines, Nitriles, and Aziridines

Hydride delivery precedes proton transfer

An Improved FLP

Hydrogenation of Ketimines and Enamines

Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. ACIE, 2008, 47, 7543-7546.

An Improved FLP

Hydrogenation of Ketimines and Enamines

Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. ACIE, 2008, 47, 7543-7546.

Isolation of zwitterion suggests adduct formation with the product is reversible and that the $B(C_6F_5)_3$ catalyst can be recycled

Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Comm., 2008, 1701-1703.

Expanding the Scope to Oxygenated Substrates Hydrogenation of Silyl Enol Ethers

Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Comm., 2008, 5966-5968.

Expanding the Scope to Oxygenated Substrates Hydrogenation of Silyl Enol Ethers

Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Comm., 2008, 5966-5968.

Expanding the Scope to Oxygenated Substrates Hydrogenation of Silyl Enol Ethers

Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Comm., 2008, 5966-5968.

Observation of hydride delivery into pyridinium inspired experimentation with N-heterocycle substrates

Aromatic Hydrogenation Hydrogenation of Anilines to Cyclohexylamines

Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. JACS, 2012, 134, 4088-4091.

Aromatic Hydrogenation Hydrogenation of Anilines to Cyclohexylamines

Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. JACS, 2012, 134, 4088-4091.

Aromatic Hydrogenation Hydrogenation of Anilines to Cyclohexylamines

Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. JACS, 2012, 134, 4088-4091.

Hydrogenation of Olefins

 $(C_6F_5)Ph_2P + B(C_6F_5)_3 - [(C_6F_5)Ph_2PH] [HB(C_6F_5)_3]$

cation posseses much greater bronsted acidity

Hydrogenation of Olefins

Hydrogenation of Non-Polar Substrates Hydrogenation of Alkynes to Cis-Alkenes

Hydrogenation of Non-Polar Substrates Hydrogenation of Alkynes to Cis-Alkenes

Hydrogenation of Non-Polar Substrates Hydrogenation of Alkynes to Cis-Alkenes

Asymmetric Catalytic Hydrogenation

Hydrogenation of Imines

Chen, D.; Wang, Y.; Klankermeyer, J. ACIE, 2010, 49, 9475-9578.

Applications in Green Chemistry Reversible CO₂ Binding

Applications in Green Chemistry SO₂ and N₂O Binding

SO₂ is a major air pollutant, precursor to acid rain

Sajid, M. et. al. Chem. Sci., 2013, 4, 213-219.

Applications in Green Chemistry SO₂ and N₂O Binding

SO₂ is a major air pollutant, precursor to acid rain

N₂O is a minor constituent in the atmosphere, but ~300x more potent as a greenhouse gas

Sajid, M. et. al. *Chem. Sci.*, **2013**, *4*, 213-219. Otten, E.; Neu, R. C.; Stephan, D. W. *JACS*, **2009**, *131*, 9918-9919.

Addition of Et₃SiH to CO₂ in the presence of an FLP efficiently reduces CO₂ to CH₄

Addition of Et₃SiH to CO₂ in the presence of an FLP efficiently reduces CO₂ to CH₄

Addition of Et₃SiH to CO₂ in the presence of an FLP efficiently reduces CO₂ to CH₄

Addition of Et₃SiH to CO₂ in the presence of an FLP efficiently reduces CO₂ to CH₄

Addition of Et₃SiH to CO₂ in the presence of an FLP efficiently reduces CO₂ to CH₄

Addition of Et₃SiH to CO₂ in the presence of an FLP efficiently reduces CO₂ to CH₄

Berkefeld, A.; Piers, W. E.; Parvez, M. JACS, 2010, 132, 10660-10661.

Limitations and Future Directions

Currently cannot hydrogenate aldehydes or ketones catalytically

- Discovery of better FLP catalysts for asymmetric induction; expanding the scope to olefin hydrogenations
- Hydrogen gas storage currently FLPs can achieve 0.25 wt % H₂; whereas to be practical need 6 9 wt % H₂ (i.e. ammonia-borane)
Summary

I. Theories on the Mechanism of H₂ Activation

- Electron Transfer Model that Invokes Frontier Molecular Orbitals
- Electric Field Model that disregards Frontier Molecular Orbitals
- Secondary non-covalent interactions play key role in lowering H₂ activation barrier

II. Applications of FLPs in Hydrogenation Reactions and Storage of Small Molecules

- Catalytic hydrogenation of imines, enamines, nitriles, aziridines, silyl enol ethers, cyclic ethers, alkenes, alkynes, ynones
- Stoichiometric hydrogenations of aldehydes, ketones
- Asymmetric imine hydrogenations
- Advances in area of green chemistry