### Circadian Rhythm: Molecular Mechanisms and Pharmacology



Scott Pedersen

MacMillan Group Meeting

January 10th, 2023

### The Circadian Rhythm: The Clock of Life

A circadian rhythm or circadian cycle, is a natural, internal process that regulates the sleep-wake cycle and repeats roughly every 24 hours.

Responsive to external stimuli (e.g. light, feeding, exercise)

Widely observed in plants, animals, fungi, and cyanobacteria

But how does this work?

### Outline

#### Discovery of circadian rhythm

- Molecular mechanisms of mammalian circadian rhythms
- Overview of associated diseases and treatment landscape
- Case studies in modulating the circadian machinery

### Outline

#### Discovery of circadian rhythm

- Molecular mechanisms of mammalian circadian rhythms
- Overview of associated diseases and treatment landscape
- Case studies in modulating the circadian machinery

#### 371 BC - First written account of a circadian rhythm





10:00

22:00

**Theophrastus** Greek philosopher + father of botany 371 BC – 287 BC

"... tree with many leaves like the rose, and that this closes at night, but opens at sunrise, and by noon is completely unfolded; and at evening again it closes by degrees and remains shut at night, and the natives say that it goes to sleep."

1729 - first controlled experiment implicating a "biological clock"



Jean-Jeaque de Mairan French scientist 1678–1771



Mimosa pudica

#### 1729 - first controlled experiment implicating a "biological clock"





Mimosa pudica

Jean-Jeaque de Mairan French scientist 1678–1771

> Continued adherence to the daily rhythm in an unlit environment suggested a free running, intrinsic biological timer

1971 - genetic link discovered for the first time





Ron Konopka (left) Seymore Benzer (right)

- 1971 Konopka and Benzer discover three genetic mutants of *drosophila* with altered circadian rhythms
  - Different rhythms in eclosion (hatching) and locomotion were observed
    - Mutations mapped to the same locus, subsequently named period

#### 1984 - drosophila period gene isolated



**Jeffrey Hall** 



**Michael Rosbash** 



**Michael Young** 

Key finding: certain subsegments of the per region would restore rhythmicity in

circadian locomotor behavior transduced into the genome of arrhythmic flies

Zehring, W. A. et al. Cell. 1984, 39, 369.

Bargiello, T. A.; Jackson, F. R.; Young, M. W. Nature. 1984, 312, 752.

#### 1984 - drosophila period gene isolated



#### Implication of a transcription/translation feedback loop

Zehring, W. A. et al. Cell. 1984, 39, 369.

Bargiello, T. A.; Jackson, F. R.; Young, M. W. Nature. 1984, 312, 752.

#### 1984 - drosophila period gene isolated





#### Implication of a transcription/translation feedback loop

The Nobel Prize in Physiology and Medicine 2017. The Nobel Prize. <u>https://www.nobelprize.org/prizes/medicine/2017/press-release/</u> (accessed Jan 6 2023)



**Jeffrey Hall** 



**Michael Rosbash** 



**Michael Young** 



The Nobel Prize in Physiology and Medicine 2017 was awarded jointly to Jeffrey C. Hall, Michael Rosbash, and Michael W. Young *"for their discoveries of molecular mechanisms controlling the circadian rhythm"* 

The Nobel Prize in Physiology and Medicine 2017. The Nobel Prize. <u>https://www.nobelprize.org/prizes/medicine/2017/press-release/</u> (accessed Jan 6 2023)

### Outline

#### Discovery of circadian rhythm

#### Molecular mechanisms of mammalian circadian rhythms

Overview of associated diseases and treatment landscape

Case studies in modulating the circadian machinery

# The Ubiquitous, Cell-Autonomous Molecular Oscillator



Lots of opportunities for fine-tuning circadian machinery!

### Suprachiasmatic Nucleus (SCN): The Master Oscillator



### Hormonal signaling from the SCN: melatonin



### Hormonal signaling from the SCN: orexin



### Outline

#### Discovery of circadian rhythm

Molecular mechanisms of mammalian circadian rhythms

#### Overview of associated diseases and treatment landscape

Case studies in modulating the circadian machinery



 Advance

 Phase advance

 Six zones east)

 Comparison

 Phase delay

 Comparison

 Base delay

 Six zones west)



Insomnia

Jet Lag or Shiftwork

Non-24



Insomnia





Non-24

25% of Americans develop insomnia each year; 10% progress to chronic insomnia Frequently associated with anxiety, depression, risk of cardiovascular disease, and poor quality of life



Insomnia



Jet Lag or Shiftwork

Non-24



Mice subjected to a chronic jet lag paradigm (8-hour phase shift) Showed significantly reduced lifespan with disease development, including neurodegeneration, severe ulcerative dermatitis, aging, cystic renal dysplasia, and cancer



AdvancePhase advance(ix zones east)Phase delayPhase delay(ix zones west)



Insomnia

Jet Lag or Shiftwork

Non-24

chronic steady pattern comprising daily delays in sleep onset and wake times in an individual living in a society

>50% of the totally blind suffer from this affliction, rarely occurs in sighted people

# Circadian rhythm signaling in disease



### Current landscape of sleep medicine



### Current landscape of sleep medicine

Why do all of these medicines exhibit similar negative effects?

All either act as GABA<sub>A</sub> receptor agonists or positive allosteric modulators



Miller, P.S.; Aricescu A. R. Nature 2014, 512, 270.

Coleman, P.J. et al. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 509.

# Current landscape of sleep medicine

Why do all of these medicines exhibit similar negative effects?

All either act as GABA<sub>A</sub> receptor agonists or positive allosteric modulators



Activates chloride ion flux in neurons

■ inhibit the propensity of neurons containing GABA<sub>A</sub> to propagate action potentials

change in mood, slowed reaction time, motor deficits, amnestic effects, and respiratory effects

Miller, P.S.; Aricescu A. R. Nature 2014, 512, 270.

Coleman, P.J. et al. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 509.

# Hormonal signaling opportunities

Melatonin and orexin – two complementary hormones

#### Melatonin signalling pathway



### Melatonin supplementation as a sleep aid



Approved for medical use in Europe, considered a dietary supplement in the US

Found to decrease sleep latency by 7.1 minutes and increase sleep duration by 8.3 minutes

Conclusion: safe, but minimally effective



Note: melatonin in the US is not well quality controlled. Melatonin content has been found to range from -83% to +478% the listed amount

Ferracioli-Oda, E.; Qawasami, A.; Bloch, M. H. PLOS One. 2013, 8, e63773.

# Other melatonin receptor agonists (late 2000s)

Goal: improve pharmacokinetics and half-life of melatonin (20-50 minutes)



Half life of 1–2.6 hours

sleep latency decreased by 4–7 minutes

meta analyses show mixed impact on total sleep time

approved for treatment of insomnia



Half life of 55–100 minutes

Approved as orphan drug for N24SWD in blind patients

- Found to increase total sleep time by 60 minutes in patients with 8 hour jet lag from eastward travel, and improve time to sleep
- rejected by FDA 3 times between 2014 and 2022 for this indication.

Polymerpoulos, C. M. et al. *Front. Neurol.* **2020**, *11*, 611. Liu, J.; Wang, L. N. *Int. J. Clin. Prac.* **2012**, *66*, 867.

### Orexin receptor antagonists (2010s)



# A universal first line of treatment



Cognitive behavioral therapy for insomnia (CBT-I) is considered the gold standard

Behavioral treatment by American and European guidelines

Uyumaz, B. E.; Fejis, L. Hu, J. Int. J. Environ. Res. Public Health. 2021, 18, 2929.

### Outline

Discovery of circadian rhythm

- Molecular mechanisms of mammalian circadian rhythms
- Overview of associated diseases and treatment landscape
- Case studies in modulating the circadian machinery

# The Ubiquitous, Cell-Autonomous Molecular Oscillator



# Phenotypic screening for circadian rhythm perturbation



#### What proteins does longdaysin target?



| Compound   | U2OS Cell-Based Circadian Assay<br>(Concentrations for Period Change,<br>µM)ª |      |      |      | In Vitro Kinase Assay (IC <sub>50</sub> , µM) <sup>b</sup> |      |      |  |
|------------|-------------------------------------------------------------------------------|------|------|------|------------------------------------------------------------|------|------|--|
|            | 5 h                                                                           | 10 h | 15 h | CKIδ | CKIα                                                       | ERK2 | CDK7 |  |
| Longdaysin | 1.5                                                                           | 5.7  | 13   | 8.8  | 5.6                                                        | 52   | 29   |  |
| Compound 1 | 4.4                                                                           | 17   | 38   | 21   | 23                                                         | 160  | 29   |  |

targets identified to be ~10 kinases with unknown connection

to clock mechanisms

# Which of Longdaysin's targets causes phase delay?



Key point: no one kinase solely responsible for maintaining circadian rhythm







#### Cryptochrome ubiquitination inhibition leads to period lengthening

KL001 found to induce phase delay by inhibiting CRY ubiquitination



CRY proteins negatively regulate regulate genes encoding rate-limiting enzymes of gluconeogenesis



**Opportunity for development of therapeutics for diabetes treatment** 

Hirota, T. et al. Science 2012, 337, 1094.



#### Can diminished expression of BMAL1 lower clock amplitude?



#### **REV-ERB** agonism successfully shrinks amplitude of circadian signaling without modifying period



#### Expression of clock dependent genes

accordingly down-regulated

### Diminished expression of BMAL1 in mice

How does diminished expression of BMAL1 effect the activity of mice?



SR9011 lowered activity significantly in mice kept solely in dark SR9011 delayed circadian activity by 3 h in mice kept in 12h light/dark cycles

#### SR9011 interacts with metabolism



#### Despite lowered activity, mice were observed to lose weight following dosing with SR9011

Elevated energy expenditure (by VO<sub>2</sub>) coupled with conserved food intake led to weight loss



**REV-ERB** agonists as a treatment for metabolic diseases?

Solt, L. A. et al. Nature 2012, 485, 62.



#### Nobiletin as a circadian amplitude enhancer via ROR agonism



Nobiletin treatment increased the amplitude of circadian rhythm gene expression



#### Nobiletin treatment led to weight loss in mice via increased activity



Nobiletin treated mice were more active regardless of light schedule





Nobiletin treated mice on a high fat diet gained less weight than controls – in a clock dependent manner



Circadian rhythm amplification as a treatment for metabolic disease and/or age related decline?

He, B. et al. Cell Metabolism 2016, 23, 610.

#### Circadian rhythm modulators in the treatment of glioblastoma



5–10% survive >5 years after diagnosis

Standard of care is maximal surgical resection, radiation therapy, and chemotherapy



Glioblastoma stem cells found to exhibit Strong circadian signaling–

A therapeutic opportunity?

### Will knocking out key clock transcription factors impact cell growth?

Proof of concept: knockout core clock transcription factors to inhibit glioblastoma growth



Growth in glioblastoma stem cells mitigated when BMAL1 and CLOCK genes were knocked out



Growth in other brain cell cultures maintained upon BMAL1 and CLOCK knockout

Glioblastoma growth uniquely sensitive to clock activity



#### Pharmacological intervention in glioblastoma stem cell antagonism



Clock interactions are maintained in glioblastoma

cells through dose dependent gene suppression

### Pharmacological intervention in glioblastoma stem cell antagonism







Dong, Z. et al. Cancer Discov. 2019, 9, 1556.

#### Clock transcription factor knockout in glioblastoma bearing mice

- shCONT - shBMAL1.1536 - shBMAL1.689 Percent survival Percent survival ۴ **T387 GSC** T3565 GSC **T387 GSC** T3565 GSC Percent survival 0 0 0 Percent survival 0 0 0 0 <sup>г</sup>Р < 0.01 *P* < 0.01 \*\*P < <u>0.01</u> \*P < 0.01 50 50-\*\**P* < 0.01 ʻ*P* < 0.01 \*P < 0.01 \*\*P < 0.01 0 0 0 0 30 20 30 40 20 30 20 30 50 20 40 40 50 0 10 50 0 10 50 0 10 40 0 10 Time (days) Time (days) Time (days) Time (days)

Core clock transcription factor knockout experiments performed in mice bearing glioblastoma stem cells

Survival of mice with core clock transcription factors BMAL1 and CLOCK knocked out exhibited greatly improved lifespan



Visual examination of mouse brain slices reveals minimal glioblastoma signs in knockout mice compared to control

### Perspective and Outlook

Circadian rhythm modulation offers an opportunity for treatment that is mechanistically distinct from classic approaches

Regulating the circadian machinery is a noteworthy approach for the treatment of a broad range of non-sleep related disorders

No period-shortening interventions have been published to date



**Questions?**