Recent Developments in Homogeneous Gold Catalysis

David A. Nagib

MacMillan Group Literature Meeting

03.17.2010

Relativistic Effects in Gold Catalysis

Relativistic effects – phenomenon resulting from the need to consider velocity as significant relative to the speed of light

$$m = m \sqrt{1 - (v/c)^2}$$

Consequences:

- · Relativistic mass increases as velocity approaches c
- · Increased mass results in decreased Bohr radius
- Contracted 6s orbital better shields (expands) 5d orbital

Gorin, D. J.; Toste, F. D. *Nature* **2007**, 446, 395-403 Pyykkö, P.; Desclaux, J. P. *Acc. Chem. Res.* **1979**, 12, 276-281

Relativistic Effects in Gold Catalysis

Relativistic effects – phenomenon resulting from the need to consider velocity as significant relative to the speed of light

$$m = m \sqrt{1 - (v/c)^2}$$

Consequences:

- Relativistic mass increases as velocity approaches c
- · Increased mass results in decreased Bohr radius
- Contracted 6s orbital better shields (expands) 5d orbital

Au=

Ð

Ag

 \oplus

Modes of Reactivity in Homogeneous Gold Catalysis

Modes of Reactivity in Homogeneous Gold Catalysis

Activation of π-systems Towards Nucleophiles

Trost's Synthesis of Bryostatin

Employing Carbon Nucleophiles: Hydroarylation

Au(I) & Au(III)-catalysts provide complete regioselectivity in the hydroarylation of terminal alkynes

Reetz, M.; Sommer, K. Eur. J. Org. Chem. 2003, 18, 3485-3496

Employing Carbon Nucleophiles: Enolate Alkylation

A wide range of β-keto esters serve as efficient nucleophiles for the mild and fast hydroalkylation of *terminal* alkynes

Deuterium studies support trans-addition mechanism and explain limitation towards internal alkynes

Kennedy-Smith, J.; Staben, S.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526-4527

Cyclization of Silyl Enol Ethers

■ Water serves as the external proton source for the final proto-deauration

Internal vs Terminal Alkynes

Markovnikov addition provides access to variously substituted cyclopentenes depending on alkyne substitution

Staben, S.; Kennedy-Smith, J.; Huang, D.; Corkey, B.; LaLonde, R.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 5991-5994

Synthetic Applications of Cyclopentenes

The non-ester bearing quaternary cyclopentenes allow rapid synthetic access to a variety of *Lycopodium* alkaloids.

Staben, S.; Kennedy-Smith, J.; Huang, D.; Corkey, B.; LaLonde, R.; Toste, F. D. Angew. Chem. Int. Ed. 2006, 45, 5991-5994 Linghu, X.; Kennedy-Smith, J.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 7671-7673 For comparison, structurally similar Lycopodium alkaloids synthesized in 22-24 steps: Laemmerhold, K.; Breit, B. Angew. Chem. Int. Ed. 2010, ASAP

Enantioselective Conia-Ene

A chiral Pd-complex was preferred due to the linear geometry of the ligand and substrates across the Au-catalyst

X-ray structures demonstrate the distance between the ligand framework and the pro-chiral substrate

Corkey, B.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168-17169 Shapiro, N.; Toste, F. D. Synlett. 2010, 5, 675-691

Enantioselective Gold Catalysis

Development of a Au(I)-catalyzed asymmetric hydroamination reaction

Coordinating counteranion provides increasing enantioselectivity due to the proposed model below

LaLonde, R.; Sherry, B.; Kang, E.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452-2453

Chiral Counterion Catalysis

Chiral induction still challenging due to the expanse of the linear gold complex

Nucleophiles also include -NHSO₂Ar & -CO₂H

Hamilton, G.; Kang, E.; Mba, M.; Toste, F. D. Science. 2007, 317, 496-499 Perspective: Lacour, J.; Linder, D. Science. 2007, 317, 462-463

Modes of Reactivity in Homogeneous Gold Catalysis

Non-Canonical Reactivity

Compared with *nucleophilic activation* provided by canonical metal catalysis, gold offers orthogonal *electrophilic activation*

Ring Expansions

Compared with *nucleophilic activation* provided by canonical metal catalysis, gold offers orthogonal *electrophilic activation*

Non-canonical nucleophiles that lack metal-coordination sites (i.e. C-C σ-bond) are suitable partners in Au-catalysis

Markham, J.; Staben, S.; Toste, F. D. *J. Am. Chem. Soc.* **2005**, *127*, 9708-9709 Kleinbeck, F.; Toste, F. D. *J. Am. Chem. Soc.* **2009**, *131*, 9178-9179

Modes of Reactivity in Homogeneous Gold Catalysis

Enyne Cycloisomerizations

Simple olefins can also serve as nucleophiles when tethered to a π–activated alkyne (1,6-Enynes)

A series of skeletal rearrangements involving carbenoid and cationic intermediates may be invoked for this transformation

Product selectivity is highly dependent on the substitution of the α,ω -envne starting materials

Nieto-Oberhuber, C.; Muñoz, M.; Buñuel, E.; Nevado, C.; Cárdenas, D.; Echavarren, A. Angew. Chem. Int. Ed. 2004, 43, 2402-2406

Enyne Cycloisomerizations Revisited

Simple olefins can also serve as nucleophiles when tethered to a π-activated alkyne (1,5-Enynes)

■ 1,5-Enynes (from propargyl alcohols) reliably provide synthetic access to the cis-fused 3,5-ring systems

Free alcohols can replace the benzyl substituent and provide access to propane-fused cyclopentenone

Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. *J. Am. Chem. Soc.* **2004**, *126*, 8654-8655 Kleinbeck, F.; Toste, F. D. *J. Am. Chem. Soc.* **2004**, *126*, 9178-9179

Enyne Cycloisomerizations Revisited

Simple olefins can also serve as nucleophiles when tethered to a π–activated alkyne (1,5-Enynes)

Further mechanistic considerations

Propargyl deuterium label is selectively incorporated in the vinyl position of the product

■ 1,2-Disubstituted olefins underwent cycloisomerization stereospecifically

Gold-carbenoid character is strongly suggested by these mechanistic observations ...

Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654-8655 Kleinbeck, F.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 9178-9179

Carbene Controversy

Fürstner strongly argues that these gold-catalyzed processes exhibit more non-classical carbocationic features

Fürstner isolated and characterized a stable alkyl-gold complex that could exist as a carbene

NMR studies strongly suggest that the *cation* mesomer better represents the complex

Employing a carboxylate trap as a mechanistic probe, Fürstner demonstrated the 1,6-enynes arise from cationic mechanism

Fürstner, A.; Morency, L. *Angew. Chem., Int. Ed.* **2008**, *47*, 5030-5033 Seidel, G.; Mynott, R.; Fürstner, A. *Angew. Chem., Int. Ed.* **2009**, *48*, 2510-2513

Carbenes Defended

Toste held that many of their methodologies strongly resembled reactivity associated with carbenic systems

Toste & Goddard's bonding model for gold(I) carbene complex involves both σ - and π - bonding, with a bond order ≤ 1

Benitez, D.; Shapiro, N.; Tkatchouk, E.; Wang, Y.; Goddard, W.; Toste, F. D. *Nature Chem.* **2009**, *1*, 482-486 Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. *J. Am. Chem. Soc.* **2009**, *131*, 2809-2811

Carbene Controversy Concluded

An entire literature meeting could be devoted to this subject ...

Ongoing debate on the cationic and carbene character of gold catalysis suggests a continuum of tunable reactivity

The *carbocation-carbenoid* continuum best offers a helpful mnemonic to explain *and predict many* facets of gold catalysis

Methods of Generating Gold Carbenes

Gold carbenes from alkynyl sulfoxides offer an orthogonal approach to reactivity previously associated with diazocarbonyls

Azides are analogous carbene precursors

Shapiro, N.; Toste, F. D. *J. Am. Chem. Soc.* **2007**, *129*, 4160-4161 Gorin, D.; Davis, N.; Toste, F. D. *J. Am. Chem. Soc.* **2005**, *127*, 11260-11261

Methods of Generating Gold Carbenes

Gold carbenes from alkynyl sulfoxides offer an orthogonal approach to reactivity previously associated with diazocarbonyls

∮ [M] Me ș o

Me Nue

Shapiro, N.; Toste, F. D. *J. Am. Chem. Soc.* **2007**, *129*, 4160-4161 Gorin, D.; Davis, N.; Toste, F. D. *J. Am. Chem. Soc.* **2005**, *127*, 11260-11261

Another Method of Generating Gold Carbenes

Propargyl carboxylates allow synthetically facile access to *gold carbenes* via a 1,2-acyloxy migration

Modular synthesis of propargyl carboxylates coupled with *gold carbene* pathways allow for rapid complexity generation

Johansson, M.; Gorin, D.; Staben, S.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002-18003

Propargyl Carboxylate Reactivity

Substitution patterns dictate formation of *vinyl gold* versus *gold carbene* species

Wang, S.; Zhang, G.; Zhang, L. Synlett. 2010, 5, 692-706

Vinyl Gold Intermediate

Substitution patterns dictate formation of *vinyl gold* versus *gold carbene* species

Vinyl gold species can also be exploited in a variety of rapid complexity generating transformations

Wang, S.; Zhang, G.; Zhang, L. Synlett. 2010, 5, 692-706

Electrophilic Trapping of Vinyl Gold

Electrophilic trapping by N-halo-succinimides affords α-halo -enones and -enals from propargyl acetates

Yu, M.; Zhang, G.; Zhang, L. *Org. Lett.* **2007**, *9*, 2147-2150 Yu, M.; Zhang, G.; Zhang, L. *Tetrahedron*. **2009**, 6*5*, 1846-1855

Electrophilic Trapping of Vinyl Gold

Catalytic molybdenum oxide allows for the use of propargyl alcohols in addition to propargyl carboxylates

Yu, M.; Zhang, G.; Zhang, L. *Org. Lett.* **2007**, *9*, 2147-2150 Ye, L.; Zhang, L. *Org. Lett.* **2009**, 11, 3646-3649

Nucleophilic Trapping of Vinyl Gold

Oxidation of the vinyl gold intermediate allows access to Au(III) oxidation state and corresponding nucleophilic trapping

A variety of intermolecular nucleophilic functionalizations can be envisioned to access α-substituted enones and enals

Peng, Y. Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 5062-5063

Gold Cross-Coupling

Addition of boronic acids under semi-aqueous conditions readily provides α-aryl enones and enals

Zhang, G.; Peng, Y. Cui, L.; Zhang, L. *Angew. Chem. Int. Ed.* **2009**, *121*, 3158-3161 *Related transformation for homo-allylic alcohols:* Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. *J. Am. Chem. Soc.* **2010**, *132*, 1474-1475

Major Milestones in Homogeneous Gold Catalysis

Asymmetric catalysis; counteranion control

Investigating & harnessing carbenoid character

Novel propargyl carboxylate reactivity

Recent Reviews on Homogeneous Gold Catalysis

Synlett '10 Accounts A Reactivity-Driven Approach to the Discovery & Development of Gold-Catalyzed Organic Reactions Shapiro, N. D.; Toste, F. D. Synlett., 2010, 5, 675-691

Gold-Catalyzed Reaction of Propargylic Carboxylates via an Initial 3,3-Rearrangement Wang, S.; Zhang, G.; Zhang, L. *Synlett.* 2010, *5*, 692-706 Chem Rev - Special Issue '08 Coinage Metals in Organic Synthesis

Gold-Catalyzed Organic Reactions Stephen, A.; Hashmi, K.; *Chem. Rev.* 2007, *7*, 3180–3211

Gold-Catalyzed Organic Transformations Li, Z.; Brouwer, C.; He, C. *Chem. Rev.* 2008, *8*, 3239–3265

Alternative Synthetic Methods through New Developments in Catalysis by Gold Arcadi, A. *Chem. Rev.* **2008**, *8*, 3266–3325

Gold-Catalyzed Cycloisomerizations of Enynes: A Mechanistic Perspective Jiménez-Núñez, E.; Echavarren, A. *Chem. Rev.* 2008, *8*, 3326–3350

Ligand Effects in Homogeneous Au Catalysis

Gorin, D.; Sherry, B.; Toste, F. D. *Chem. Rev.* **2008**, *8*, 3351–3378

and many more ...

Chem Soc Rev - Special Issue '08 GOLD: CHEMISTRY, MATERIALS & CATALYSIS

Gold catalysis in total synthesis Stephen, A.; Hashmi, K.; Rudolph, M. *Chem. Soc. Rev.* **2008**, *37*, 1766-1775

N-Heterocyclic carbenes in Au catalysis Marion, N.; Nolan, S. *Chem. Soc. Rev.* **2008**, *37*, 1776-1782