Physics, Chemistry and Biology in Art Conservation

Dani Arias-Rotondo

MacMillan Group Meeting May 6, 2020

(dedicated to my Mom, who wishes I was an artist instead)

Art Conservation and Cultural Heritage What are "Works of Art"?

Large variety of materials and techniques employed: art conservation is a multidisciplinary scientific endeavor

Physics, Chemistry and Biology in Art Conservation Presentation Outline

From Craft to Science

Until the Nineteenth Century

Art conservation was carried out by artisans, taught as an apprenticeship

Late 19th century – Early 20th century

1880 – First Museum Laboratory opened (State Museum in Berlin)

1919 – British Museum opened its laboratory for Research in Conservation

finding and training scientists to work on art conservation was still a challenge

In the United States

late 1950s – Fogg Museum (Harvard) ceased to accept apprentices

1960 – The Conservation Center of the Institute of Fine Arts (NYU) opened

oldest degree-granting conservation program in North America

https://www.nyu.edu/gsas/dept/fineart/conservation/history.htm Gettens, R. *Science* **1961**, *133*, 1212.

From Craft to Science

Volume 43, Issue 6 – 2010

Special Issue

Advanced Techniques in Art Conservation

Volume 57, Issue 25 – 2018

Special Issue

Heritage Science

What Questions are Relevant for Art Conservation?

Cotte, M. et al. *J. Anal. At. Spectrom.* **2008**, *23*, 820. Cotte, M. et al. *Acc. Chem. Res.* **2010**, *43*, 705.

What Questions are Relevant for Art Conservation?

Cotte, M. et al. *J. Anal. At. Spectrom.* **2008**, *23*, 820. Cotte, M. et al. *Acc. Chem. Res.* **2010**, *43*, 705.

What Questions are Relevant for Art Conservation?

This combined approach is key to successfully preserve cultural heritage

https://www.nytimes.com/2012/08/24/world/europe/botched-restoration-of-ecce-homo-fresco-shocks-spain.html

Introduction

 \bigcirc

Motivation

Relevant Questions

Understanding the Past

Analytical Techniques

X-ray Spectroscopy

Case Studies: Vermilion Photodarkening

Towards the Future

Cleaning Works of Art

Case Studies: Microorganisms for Biocleaning

Analytical Techniques in Art Conservation

Giovanni Brunetti, B. et al. Acc. Chem. Res. 2010, 43, 693.

Synchrotron Radiation (SR)-Based Techniques

European Synchrotron Radiation Facility

Grenoble (France)

Synchrotron Radiation (SR)-Based Techniques

European Synchrotron Radiation Facility

Grenoble (France)

ID21 beamline

~25% beamtime Cultural Heritage applications

Cotte, M. et al. *J. Anal. At. Spectrom.* **2017**, *32*, 477. https://www.esrf.eu/about Cotte, M. et al. *Acc. Chem. Res.* **2010**, *43*, 705.

Synchrotron Radiation (SR)-Based Techniques

Cotte, M. et al. *J. Anal. At. Spectrom.* **2017**, *32*, 477. Cotte, M. et al. *Acc. Chem. Res.* **2010**, *43*, 705.

Vermilion The Most Widely Used Red Pigment Around the World

<image>

Wall painting from the Villa of P. Fannius Synistor at Boscoreale, ca. 50–40 B.C. Roman, Late Republic. Fresco The Metropolitan Museum of Art

Funerary Mask, A.D. 900–1100. Peru. Gold, silver-copper overlays, cinnabar, The Metropolitan Museum of Art

Vermilion The Most Widely Used Red Pigment Around the World

Hogan, C.; Da Pieve, F. *J. Anal. At. Spectrom.* **2015**, *30*, 588. https://www.metmuseum.org/blogs/collection-insights/2018/cinnabar-vermilion

Vermilion The Most Widely Used Red Pigment Around the World

Founded in 1326 by Queen Elisenda de Montcada and her husband King James II

Founded in 1326 by Queen Elisenda de Montcada and her husband King James II

Queen Elisenda's Tomb

Polychromic flowered decoration using vermilion

The walls were covered with plaster (gypsum) at a later time

The plaster was later removed, damaging the original painting

Restoration project began in 2007

Goal: Identify Original Materials and Decomposition Products

Cinnabar identified using SEM-EDX

Goal: Identify Original Materials and Decomposition Products

Cinnabar identified using SEM-EDX

Three elements of interest: Hg, S, and CI – μ -XANES and μ -XRF to distinguish co-location and bonding

Three elements of interest: Hg, S, and CI – μ -XANES and μ -XRF to distinguish co-location and bonding

Three main S-containing species, forming separate layers

Cotte, M. et al. J. Anal. At. Spectrom. 2008, 23, 820.

From cinnabar to calomel – what is the role of chlorine?

Layered structure suggests chlorine "digests" cinnabar from the top down

Cotte, M. et al. J. Anal. At. Spectrom. 2008, 23, 820.

— original paint samples ——

on top of the darkened sections

P. P. Rubens (1577-1640) The Adoration of the Magi (1624), oil on canvas Royal Museum of Fine Arts Antwerp

P. P. Rubens (1577-1640) The Adoration of the Magi (1624), oil on canvas Royal Museum of Fine Arts Antwerp

samples	methods	<i>— identified compounds —</i>		
artificially aged HgS	lab μ-XRD SR μ-XRD	lpha-HgS	α -Hg ₃ S ₂ Cl ₂	Hg ₂ Cl ₂
Adoration of the Magi	μ-XRF/μ-XANES SR μ-XRD	α -HgS	γ-Hg ₃ S ₂ Cl ₂	Hg ₂ Cl ₂
Pedralbes Monastery	μ-XRF/μ-XANES SR μ-XRD	α -HgS	α-Hg ₃ S ₂ Cl ₂ γ-Hg ₃ S ₂ Cl ₂	Hg ₂ Cl ₂

Corderoite (α -Hg₃S₂Cl₂; purple-gray) and calomel (Hg₂Cl₂; white) responsible for color changes

Pedralbes Monastery – μ-XRD results

Radepont, M. et al. J. Anal. At. Spectrom. 2011, 26, 959.

Ab-Initio Treatment of Vermilion Photodarkening

Vermilion photodarkening is a widespread phenomenon

Photodegradation products have been identified, but mechanism is unclear

Understanding these processes helps develop conservation strategies

Novel approach DFT + TD-DFT to interpret previously reported experimental results

Hogan, C.; Da Pieve, F. J. Anal. At. Spectrom. 2015, 30, 588.

Ab-Initio Treatment of Vermilion Photodarkening The Effect of Chloride

Cl adsorption on cinnabar (modeled)

chlorine bonding environment is similar in all three lattices

Ab-Initio Treatment of Vermilion Photodarkening The Effect of Chloride

closer lattice match between HgS and α -Hg₃S₂Cl₂ α -Hg₃S₂Cl₂ is the main product

Ab-Initio Treatment of Vermilion Photodarkening The Role of Defects

Pure α -Hg₃S₂Cl₂

Defective α -Hg₃S₂Cl₂

Hogan, C.; Da Pieve, F. J. Anal. At. Spectrom. 2015, 30, 588.

Ab-Initio Treatment of Vermilion Photodarkening Proposed Mechanism

Hogan, C.; Da Pieve, F. J. Anal. At. Spectrom. 2015, 30, 588.

Ab-Initio Treatment of Vermilion Photodarkening Photoinduced Electron Transfer as a Degradation Mechanism

Electron transfer is more favorable for HgCl₂ than Hg₂Cl₂

Hogan, C.; Da Pieve, F. J. Anal. At. Spectrom. 2015, 30, 588.

Ab-Initio Treatment of Vermilion Photodarkening Conclusions and Outlook

"Our study thus implies that, while works of art such as outdoor mural paintings can hardly be protected, degradation of indoor paintings in museums can be avoided with continuous control of the **humidity and chloride levels** in the air and by using **below-gap illumination** of the paintworks."

Introduction

 \mathbf{O}

Motivation

Relevant Questions

Understanding the Past

Analytical Techniques

X-ray Spectroscopy

Case Studies: Vermilion Photodarkening

Towards the Future

Cleaning Works of Art

Case Studies: Microorganisms for Biocleaning

A Scientific Approach to Cleaning Works of Art

Ideal Cleaning Agents
selectively remove deposits and deteriorated varnish
do not affect underlying paint layers
are completely removed with no damage to the artwork

Chelazzi, D. et al. *Angew. Chem. Int. Ed.* **2018**, *57*, 7296. Carretti, E. et al. *Acc. Chem. Res.* **2010**, *43*, 751.

Biotechnology in Art Conservation

traditional: "wet" solvents

may dissolve the painting toxic to the operator hazardous waste generated

alternative: enzymes or microorganisms

highly selective nonpathogenic microorganisms main degradation products are CO₂ and H₂O

enzymes

target a single linkage high cost trained operators

microorganisms _____
remove resistant or complex materials
lower cost
easier application

P. Stutzeri Picture courtesy of Dr. Rich Davis

Biorestoration of Frescoes Camposanto Monumentale di Pisa (Italy)

The cemetery was bombed during WWII Frescoes detached from the walls for safekeeping Hydrophobic behavior due to protein polymerization Previous restoration using traditional methods

https://www.opapisa.it/en/multimedia/photo-gallery/ Ranalli, G. et al. *J. Appl. Microbiol.* **2018**, *125*, 800.

Biorestoration of Frescoes Removal of Old Glue and Gauze

Effectiveness depended on thickness of glue layer: longer application times damaged the painting

first stage	second stage	after treatment
removal of glue and gauze using <i>P. stutzeri</i>	proteases to remove leftover glue	carefully remove bacteria check for bacterial growth

Biorestoration of Frescoes Removal of Old Glue and Gauze

first stage	second stage	after treatment
removal of glue and gauze using <i>P. stutzeri</i>	proteases to remove leftover glue	carefully remove bacteria check for bacterial growth

Bioremoval of a Sulfate Layer from a Marble Artifact

Eternal Father in the Act of Blessing Regional Gallery of Palazzo Abatellis (Palermo, Italy) Polychrome marble bas-relief from the 15th century "Black sulfate" crust (CaSO₄ with coal and silicates)

Bioremoval of a Sulfate Layer from a Marble Artifact

Eternal Father in the Act of Blessing
Regional Gallery of Palazzo Abatellis (Palermo, Italy)
Polychrome marble bas-relief from the 15th century

"Black sulfate" crust (CaSO₄ with coal and silicates)

Desulfovibrio vulgaris
Cells immobilized in Carbogel (polyacrylic acid)
Successful removal confirmed by XRF
Desired cleaning obtained after three applications

Martino, M. et al. Conserv. Sci. Cult. Her. 2015, 15, 235.

Physics, Chemistry and Biology in Art Conservation Presentation Outline

Thank You!

© Joaquín Salvador Lavado (Quino)