The Excited States of Inorganic Photocatalysts: (Part of) Why Iridium Polypyridyls are Privileged Structures

Eric Nacsa
MacMillan Group Meeting
April 10, 2018

What Makes an Effective Photo(redox) Catalyst Class?

All properties should remain intact as we move the redox window

Photo(redox) Catalysis with Inorganic Complexes

$\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

Iridium Provides a General Platform for Photo(redox) Catalysts

Iridium Provides a General Platform for Photo(redox) Catalysts

Outline

■ Introduction to spin-orbit coupling

■ Role of spin-orbit coupling in intersystem crossing
\square The triplet excited state of $\operatorname{Ir}(p p y)_{3}$

- A simple model for photophysical properties of 6-coordinate complexes

Absorption and Emission Spectra

■ Atomic/molecular fingerprints allowing the assignment of excited state energies

Emission Spectrum of Carbon

Excited State Energies and Configurations

■ Sorted first by principal and secondary quantum numbers
■ $\mathrm{E}(n=1)<\mathrm{E}(n=2)<\mathrm{E}(n=3)<\ldots$
$\square \mathrm{E}(I=0, s$ orbital $)<\mathrm{E}(I=1, p$ orbital $)<\mathrm{E}(I=2, d$ orbital $)<\ldots$
■ Fine structure gives richer information about electronic configuration

An Excited State of Carbon

■ Ground state is $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$

- Has further descriptors since it is not closed-shell (we will disregard these here)
- Consider the excited state $[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1}$

■ It is instructive to work through the associated term symbols and relative energies
12 possible electron configurations

$$
2 p \frac{\uparrow}{x} \frac{\uparrow}{y} \frac{\downarrow}{z} \frac{\downarrow}{y} \frac{\downarrow}{z} \frac{\uparrow}{x} \frac{\uparrow}{z} \quad \frac{-}{x} \frac{\downarrow}{y} \frac{\downarrow}{z} \quad \frac{-}{x} \frac{-}{y} \frac{\uparrow}{z} \quad \frac{\downarrow}{x} \frac{\downarrow}{y} \frac{\downarrow}{z}
$$

This strategy indicates there are 12 states but each 'cartoon' descriptor is not a complete state with a unique energy

Quantum Numbers

■ Consider the excited state $[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1}$

$$
\vec{l}=m_{e} \vec{r} \times \vec{v}
$$

■ Need the quantum numbers of each valence electron

- A quick review of quantum numbers
n - principal quantum number (energy level)

$$
n=1,2,3,4, \ldots
$$

I - orbital quantum number (orbital shape, angular momentum of orbital motion)
$I=1,2,3, \ldots, n-1(s, p, d, \ldots)$
\vec{l} is quantized such that its magnitude is given by

$$
\|\vec{l}\|^{2}=L^{2}=\hbar^{2} I(I+1)
$$

m_{l} - orbital magnetic quantum number (projection of \vec{I} onto the z-axis)
$m_{l}=-l,-l+1, \ldots, l-1, l$
L_{z} is quantized such that

$$
L_{z}=m_{l} \hbar
$$

for a given I, indicates the subshell, e.g., p_{x} vs. p_{y} vs. p_{z} for $I=1$

$$
\left.\oint \begin{array}{l}
m_{l}=+1 \\
\left(p_{x}\right)
\end{array} \bigcirc \begin{array}{l}
m_{l}=0 \\
\left(p_{z}\right)
\end{array} \circlearrowright \begin{array}{l}
m_{l}=-1 \\
\left(p_{y}\right)
\end{array}\right\} \begin{gathered}
L=1 \\
p \text { orbitals }
\end{gathered}
$$

Quantum Numbers

■ Consider the excited state $[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1}$
■ Need the quantum numbers of each valence electron
■ A quick review of quantum numbers
n - principal quantum number (energy level)

$$
n=1,2,3,4, \ldots
$$

$$
\vec{l}=m_{e} \overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{v}}
$$

s - spin quantum number (a constant, angular momentum of spin motion)
$s=1 / 2$
$\overrightarrow{\boldsymbol{s}}$ is quantized such that its magnitude is given by

$$
\|\overrightarrow{\boldsymbol{s}}\|^{2}=S^{2}=\hbar^{2} s(s+1)=3 / 4 \hbar^{2}
$$

$m_{s}-$ spin magnetic quantum number (projection of $\overrightarrow{\boldsymbol{s}}$ onto the z-axis)
$m_{s}= \pm 1 / 2$
S_{z} is quantized such that

$$
S_{z}=m_{s} \hbar= \pm 1 / 2 \hbar
$$

indicates spin 'up' or 'down'

Addition of Angular Momentum

■ Term symbols for $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 p^{1} 3 s^{1}$
■ The energies of the various substates will depend on \vec{I} and $\overrightarrow{\boldsymbol{s}}$ of the valence electrons
■ These angular momenta can be straightforwardly added in two limiting cases

LS Coupling Hierarchy

- Best applied to lighter elements
- Coupling between electrons of $\overrightarrow{\boldsymbol{I}}$ and of $\overrightarrow{\boldsymbol{s}}$ is most important

■ These quantities are added to give possible values of $\overrightarrow{\boldsymbol{L}}$ and $\overrightarrow{\boldsymbol{S}}$ for the atom

$$
\begin{array}{ll}
\overrightarrow{\boldsymbol{L}}=\vec{l}_{1}+\vec{l}_{2} & L=\left|l_{1}-l_{2}\right|,\left|l_{1}-l_{2}\right|+1, \ldots l_{1}+l_{2}-1, l_{1}+l_{2} \\
\overrightarrow{\boldsymbol{S}}=\overrightarrow{\boldsymbol{s}}_{1}+\overrightarrow{\boldsymbol{s}}_{2} & S=s_{1}-s_{2}, s_{1}+s_{2}=1,0
\end{array}
$$

- Interaction between $\overrightarrow{\boldsymbol{L}}$ and $\overrightarrow{\boldsymbol{S}}$ is relatively small and treated as a perturbation (see later)

■ Possible states are assigned a term symbol ${ }^{2 \mathrm{~S}+1} \mathrm{~L}$ (as long as Pauli principle not violated)

Addition of Angular Momentum

- Term symbols for $[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1}$

■ The energies of the various substates will depend on \vec{I} and $\overrightarrow{\boldsymbol{s}}$ of the valence electrons
■ These angular momenta can be straightforwardly added in two limiting cases

LS Coupling Hierarchy

- Two valence electrons to consider:

$$
[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1} \quad l_{1}=1 \quad[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1} \quad l_{2}=0
$$

■ The possible values of L and S are thus

$$
\begin{aligned}
& L=\left|l_{1}-I_{2}\right|,\left|l_{1}-l_{2}\right|+1, \ldots l_{1}+l_{2}-1, l_{1}+l_{2}=1 \\
& S=s_{1}-s_{2}, s_{1}+s_{2}=1,0
\end{aligned}
$$

- The term symbols associated with this excited state of carbon are thus

$$
{ }^{3} \mathbf{P} \quad \text { and } \quad{ }^{\mathbf{1}} \mathbf{P}
$$

Excited State Energies of Carbon

■ Energies for $[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1}$
■ According to Hund's rules, triplets are lower in energy than singlets, so we expect that

What is the origin of this fine structure?

Spin-Orbit Coupling

■ There are magnetic moments μ associated with the angular momenta of an electron

The interaction of these magnetic moments gives rise to spin-orbit coupling

- The energy of this interaction is proportional to the scalar product of the angular momenta

$$
\begin{gathered}
E_{\mathrm{SOC}}=k \overrightarrow{\boldsymbol{s}} \cdot \vec{I} \quad \text { which can further be manipulated to obtain the result } \\
E_{\mathrm{SOC}}=a[j(j+1)-I(I+1)-s(s+1)]
\end{gathered}
$$

\square An expression for a is not important but it is critical to note that $a \propto Z^{4}$

Addition of Angular Momentum

■ Term symbols for $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 p^{1} 3 s^{1}$
■ The energies of the various substates will depend on \vec{I} and $\overrightarrow{\boldsymbol{s}}$ of the valence electrons
■ These angular momenta can be straightforwardly added in two limiting cases

LS Coupling Hierarchy

- Best applied to lighter elements

■ Coupling between electrons of $\overrightarrow{\boldsymbol{I}}$ and of $\overrightarrow{\boldsymbol{s}}$ is most important
■ These quantities are added to give possible values of $\overrightarrow{\boldsymbol{L}}$ and $\overrightarrow{\boldsymbol{S}}$ for the atom

$$
\begin{array}{ll}
\overrightarrow{\boldsymbol{L}}=\vec{I}_{1}+\vec{l}_{2} & L=\left|l_{1}-l_{2}\right|,\left|l_{1}-l_{2}\right|+1, \ldots l_{1}+l_{2}-1, l_{1}+l_{2} \\
\overrightarrow{\boldsymbol{S}}=\overrightarrow{\boldsymbol{s}}_{1}+\overrightarrow{\boldsymbol{s}}_{2} & S=s_{1}-s_{2}, s_{1}+s_{2}=1,0
\end{array}
$$

■ Interaction between $\overrightarrow{\boldsymbol{L}}$ and $\overrightarrow{\boldsymbol{S}}$ is accounted for using the total angular momentum, $\overrightarrow{\boldsymbol{J}}$

$$
\vec{J}=\vec{L}+\vec{S} \quad J=\mid L-S I, I L-S I+1, \ldots L+S-1, L+S
$$

■ Possible states are assigned a term symbol ${ }^{2 S+1} L_{J}$ (as long as Pauli principle not violated)

Addition of Angular Momentum

■ Term symbols for $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1} 3 \mathrm{~s}^{1}$
■ The energies of the various substates will depend on \vec{I} and $\overrightarrow{\boldsymbol{s}}$ of the valence electrons
■ These angular momenta can be straightforwardly added in two limiting cases

LS Coupling Hierarchy

- Two valence electrons to consider:

$$
[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1} \quad l_{1}=1 \quad[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1} \quad l_{2}=0
$$

■ The possible values of L and S are thus

$$
\begin{aligned}
& L=\left|l_{1}-I_{2}\right|,\left|l_{1}-I_{2}\right|+1, \ldots l_{1}+I_{2}-1, l_{1}+I_{2}=1 \\
& S=s_{1}-s_{2}, s_{1}+s_{2}=1,0
\end{aligned}
$$

- The possible values of J are

$$
J=|L-S|,|L-S|+1, \ldots L+S-1, L+S=2,1,0 \quad \text { (for } S=1) \quad \mid \quad J=1 \text { for } S=0
$$

- The term symbols associated with this excited state of carbon are thus

$$
\begin{array}{lllll}
& 3 & P_{2} & { }^{3} P_{1} & { }^{3} P_{0}
\end{array} \quad \text { and } \quad{ }^{1} P_{1}
$$

Fine Structure of Excited State Carbon

- Energies for $[\mathrm{He}] 2 s^{2} 2 p^{1} 3 s^{1}$

■ Spin-orbit coupling explains the fine structure of the ${ }^{3} \mathrm{P}$ level

An Excited State of Lead

- Term symbols for $[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 \mathrm{~s}^{2} 6 p^{1} 7 \mathrm{~s}^{1}$

■ The energies of the various substates will depend on \vec{I} and $\overrightarrow{\boldsymbol{s}}$ of the valence electrons
■ These angular momenta can be straightforwardly added in two limiting cases

LS Coupling Hierarchy

■ Best applied to lighter elements - not valid for Pb

- Coupling between electrons of $\overrightarrow{\boldsymbol{I}}$ and of $\overrightarrow{\boldsymbol{s}}$ is most important

■ These quantities are added to give possible values of $\overrightarrow{\boldsymbol{L}}$ and $\overrightarrow{\boldsymbol{S}}$ for the atom

$$
\begin{array}{ll}
\overrightarrow{\boldsymbol{L}}=\vec{l}_{1}+\vec{l}_{2} & L=\left|l_{1}-l_{2}\right|,\left|l_{1}-l_{2}\right|+1, \ldots l_{1}+l_{2}-1, l_{1}+l_{2} \\
\overrightarrow{\boldsymbol{S}}=\overrightarrow{\boldsymbol{s}}_{1}+\overrightarrow{\boldsymbol{s}}_{2} & S=s_{1}-s_{2}, s_{1}+s_{2}=1,0
\end{array}
$$

■ Interaction between $\overrightarrow{\boldsymbol{L}}$ and $\overrightarrow{\boldsymbol{S}}$ is accounted for using the total angular momentum, $\overrightarrow{\boldsymbol{J}}$

$$
\vec{J}=\vec{L}+\vec{S} \quad J=|L-S|, I L-S \mid+1, \ldots L+S-1, L+S
$$

■ Possible states are assigned a term symbol ${ }^{2 S+1} L_{J}$ (as long as Pauli principle not violated)

An Excited State of Lead

- Term symbols for $[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 \mathrm{~s}^{2} 6 \mathrm{p}^{1} 7 \mathrm{~s}^{1}$

■ The energies of the various substates will depend on \vec{I} and $\overrightarrow{\boldsymbol{s}}$ of the valence electrons
■ These angular momenta can be straightforwardly added in two limiting cases

jj Coupling Hierarchy

- Best applied to heavier elements - valid for Pb

■ Coupling between \vec{I} and $\overrightarrow{\boldsymbol{s}}$ of each individual electron most important
■ These quantities combined first for each electron to find its total angular momentum \vec{j}

$$
\begin{array}{ll}
\overrightarrow{\boldsymbol{j}_{1}}=\vec{l}_{1}+\overrightarrow{\boldsymbol{s}}_{1} & j_{1}=\left|l_{1}-s_{1}\right|, l_{1}+s_{1}=\left|l_{1} \pm 1 / 2\right| \\
\overrightarrow{\boldsymbol{j}_{2}}=\vec{l}_{2}+\overrightarrow{\boldsymbol{s}}_{2} & j_{2}=\left|l_{2}-s_{2}\right|, l_{2}+s_{2}=\left|l_{2} \pm 1 / 2\right|
\end{array}
$$

■ Interactions between electrons are less important, accounted for by adding individual $\overrightarrow{\boldsymbol{j}}$

$$
\overrightarrow{\boldsymbol{J}}=\vec{j}_{1}+\vec{j}_{2} \quad J=\left|j_{1}-j_{2}\right|,\left|j_{1}-j_{2}\right|+1, \ldots j_{1}+j_{2}-1, j_{1}+j_{2}
$$

\square Possible states are assigned a term symbol $\left(j_{1}, j_{2}\right)_{J}$

An Excited State of Lead

- Term symbols for $[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 \mathrm{~s}^{2} 6 p^{1} 7 \mathrm{~s}^{1}$

■ The energies of the various substates will depend on \vec{I} and $\overrightarrow{\boldsymbol{s}}$ of the valence electrons
■ These angular momenta can be straightforwardly added in two limiting cases

jj Coupling Hierarchy

- Two valence electrons to consider:

$$
\begin{array}{ll}
{[\mathrm{Xe}] 4 f^{14} 5 d^{10} 6 s^{2} 6 p^{1} 7 s^{1}} & l_{1}=1, s_{1}=1 / 2 \Rightarrow j_{1}=3 / 2,1 / 2 \\
{[\mathrm{Xe}] 4 f^{14} 5 d^{10} 6 s^{2} 6 p^{1} 7 s^{1}} & I_{2}=0, s_{2}=1 / 2 \Rightarrow j_{2}=1 / 2
\end{array}
$$

■ Evaluating the expression for J, possible values are then

$$
\begin{array}{ll}
J=2,1 & \left(\text { for } j_{1}=3 / 2, j_{2}=1 / 2\right) \\
J=1,0 & \left(\text { for } j_{1}=1 / 2, j_{2}=1 / 2\right)
\end{array}
$$

- The term symbols for this excited state of Pb are therefore

$$
(3 / 2,1 / 2)_{2} \quad(3 / 2,1 / 2)_{1} \quad(1 / 2,1 / 2)_{1} \quad(1 / 2,1 / 2)_{0}
$$

Excited States of Carbon and Lead

Excited States of Carbon and Lead

Pb*
$[X e] 4 f^{14} 5 d^{10} 6 s^{2} 6 p^{1} 7 s^{1}$

Excited States of Carbon and Lead

Interactions between electrons dominate

- SOC weak

1. Find L and S for whole atom, predicts first-order structure - ${ }^{1} P$ and ${ }^{3} P$ terms
2. Find whole-atom SOC from L and S, predicts fine structure $-{ }^{3} P_{2},{ }^{3} P_{1},{ }^{3} P_{0}$

Pb*
$[X e] 4 f^{14} 5 d^{10} 6 s^{2} 6 p^{1} 7 s^{1}$

SOC dominates Interactions between electrons weak

1. Find possible j for each electron, gives
first-order structure - $(3 / 2,1 / 2) \&(1 / 2,1 / 2)$
2. Find J for the whole atom from each e^{-}, predicts fine structure

Excited States of Carbon and Lead

Excited States of Carbon and Lead

I-s interactions (SOC) are strong and assessed first by combining them in
$j_{i}=l_{i}+s_{i}$ for each electron
interactions between electrons are weak and only assessed by combining their TOTAL angular momenta

SOC dominates Interactions between electrons weak

1. Find possible j for each electron, gives first-order structure - $(3 / 2,1 / 2) \&(1 / 2,1 / 2)$
2. Find J for the whole atom from each e^{-}, predicts fine structure

'First' Excited States of Group 14 Elements

A Physical Model for Intersystem Crossing

\square A change resulting in ISC must adhere to conservation laws

■ Spin flip involves a change in the z-component of spin angular momentum
■ Angular momentum must be conserved in every axis - no ISC 'in isolation' ... but

Change in spin angular momentum can be offset by a change in orbital angular momentum

A Physical Model for Intersystem Crossing

■ A change resulting in ISC must adhere to conservation laws
initial singlet state

Angular momentum balance sheet

No change in total angular momentum

A Physical Model for Intersystem Crossing

■ A change resulting in ISC must adhere to conservation laws

$\square \hat{H}_{\text {SO }}$ enables ISC via the torque of electrons' spin and orbital magnetic moments on each other
■ Involves exchanging the orbital of the electron undergoing the spin flip with another orbital

- Necessarily changes the (sub)-orbital of the electron undergoing the spin flip
- A few molecular features lead to faster ISC

A Physical Model for Intersystem Crossing

Probability of ISC increases as the term

$$
\begin{gathered}
\frac{\left\langle\psi_{\text {init }} / \hat{H}_{S O} I \psi_{\text {final }}\right\rangle}{I E_{\text {init }}-E_{\text {final }} I} \\
\text { becomes large for any possible } H_{s o} \\
\text { DOES NOT NEED TO BE A } 90^{\circ} \text { ROTATIQN }
\end{gathered}
$$

- $\hat{H}_{\text {so }}$ enables ISC via the torque of electrons' spin and orbital magnetic moments on each other
- Involves exchanging the orbital of the electron undergoing the spin flip with another orbital
- Necessarily changes the (sub)-orbital of the electron undergoing the spin flip
- A few molecular features lead to faster ISC

A Physical Model for Intersystem Crossing

Probability of ISC increases as the term

$$
\frac{\left\langle\psi_{\text {init }}\right| \hat{H}_{S O}\left|\psi_{\text {final }}\right\rangle}{\left|E_{\text {init }}-E_{\text {final }}\right|}
$$

becomes large for any possible $H_{\text {so }}$

Factors that promote faster ISC via $\hat{H}_{\text {so }}$

■ Initial and final states should look as similar as possible

- Orbitals being exchanged need similar shapes (ignoring orientation)

■ Orbitals being exchanged need similar energies
■ Electron velocity should be as high as possible (maximizes μ_{l} to torque μ_{s})
■ MO containing the e^{-}of interest should contain a heavy atom (Z^{4} term)
■ MO can also be highly localized (e^{-}always near a nucleus, even if light)

- \hat{H}
$\hat{H}_{\text {SO }}$ enables ISC via the torque of electrons' spin and orbital magnetic moments on each other
■ Involves exchanging the orbital of the electron undergoing the spin flip with another orbital
■ Necessarily changes the (sub)-orbital of the electron undergoing the spin flip
- A few molecular features lead to faster ISC

An Example of ISC via $\hat{H}_{S O}$

- MO representations of ground and excited states of acetone

■ $\pi \mathrm{MO}$ depicted as constituent p orbitals to clarify symmetry

- Depictions showing electron(s) in either constituent porbital are equivalent

An Example of ISC via $\hat{H}_{\text {SO }}$

- MO representations of ground and excited states of acetone

$$
\pi=\mathrm{p}_{x}(\mathrm{C})+\mathrm{p}_{x}(\mathrm{O})
$$

Ground state

${ }^{1}\left(n, \pi^{*}\right)$ state

■ π and π^{*} MOs lumped together to simplify symmetry
\square Consider electrons in π and π^{*} MOs independently

An Example of ISC via $\mathrm{H}_{\text {SO }}$

- MO representations of ground and excited states of acetone

$$
\pi=p_{x}(\mathrm{C})+\mathrm{p}_{x}(\mathrm{O})
$$

${ }^{1}\left(n, \pi^{*}\right)$ state

$3\left(\pi, \pi^{*}\right)$
state

An Example of ISC via $\hat{H}_{\text {SO }}$

■ Illustration of the symmetry considerations needed for ISC:
■ If acetone is initially excited to a ${ }^{1}\left(n, \pi^{*}\right)$ state, what triplet state may it relax to?

Energies of Inorganic Complexes

■ Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
■ As a starting point (and for clarity), consider a d^{6} octahedral complex, e.g., $\mathrm{M}(\mathrm{py})_{6}{ }^{\mathrm{n}+}$

"Photochemistry and Photophysics of Coordination Compounds II." Balzani, V.; Campagna, S.; eds. Top. Curr. Chem. 2007, 281.

Energies of Inorganic Complexes

■ Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
■ As a starting point (and for clarity), consider a d^{6} octahedral complex, e.g., $\mathrm{M}(\mathrm{py})_{6}{ }^{\mathrm{n}+}$

Key points on energies

- Ideal hierarchy is depicted

■ MLCT excited with visible/near-UV light
Involvement of heavy M enables SOC, ISC d -d states may have issues with e^{-}transfer L-L states do not involve M, have low SOC

- MLCT is not useful if its energy is too low A problem for many Rh, Os catalysts
- L-L states interfere if $\mathrm{d} \pi_{\mathrm{M}}$ too low $/ \pi_{\mathrm{L}}$ too high
\square Small Δ_{0} leads to low-energy d-d states A problem for many $3^{\text {rd }}$-row catalysts
- Low-E L-L or d-d states deactivate MLCT states and have too little energy to be useful themselves
6L

Energies of Inorganic Complexes

- Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
- Real 6-coordinate complexes have lower symmetry, but O_{h} is a reasonable approximation

$$
M L_{6}{ }^{n+}\left(O_{h}\right)
$$

$\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}\left(\mathrm{D}_{3}\right)$

$\operatorname{Ir}(p p y)_{3}\left(C_{3}\right)$

Energies of Inorganic Complexes

- Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

■ Real 6-coordinate complexes have lower symmetry, but O_{h} is a reasonable approximation

Descent in symmetry can be treated as a perturbation

Intersystem Crossing in Octahedral Inorganic Complexes

- Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
- Following MLCT, consider the SOC interaction needed to facilitate ISC from S_{1} to T_{1}

$$
M L_{6}{ }^{n+}\left(O_{h}\right)
$$

$e_{g}-$ - $d \sigma^{*} M$

Intersystem Crossing in Octahedral Inorganic Complexes

■ Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

- Following MLCT, consider the SOC interaction needed to facilitate ISC from S_{1} to T_{1}

Intersystem Crossing in Octahedral Inorganic Complexes

■ Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

- Following MLCT, consider the SOC interaction needed to facilitate ISC from S_{1} to T_{1}

Intersystem Crossing in Octahedral Inorganic Complexes

■ Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

- Following MLCT, consider the SOC interaction needed to facilitate ISC from S_{1} to T_{1}
\square Need a spin flip AND a change in orbital angular momentum by net e^{-}transfer between orbitals
- The orbitals should be metal-centered, have similar shapes and energies, but different m_{L} values

Intersystem Crossing in Octahedral Inorganic Complexes

- Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
- Following MLCT, consider the SOC interaction needed to facilitate ISC from S_{1} to T_{1}

■ Need a spin flip AND a change in orbital angular momentum by net e^{-}transfer between orbitals

- The orbitals should be metal-centered, have similar shapes and energies, but different m_{L} values

Intersystem Crossing in Octahedral Inorganic Complexes

■ Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
■ Following MLCT, consider the SOC interaction needed to facilitate ISC from S_{1} to T_{1}

- Need a spin flip AND a change in orbital angular momentum by net e^{-}transfer between orbitals
- The orbitals should be metal-centered, have similar shapes and energies, but different m_{L} values

Intersystem Crossing in Octahedral Inorganic Complexes

- Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
- Following MLCT, consider the SOC interaction needed to facilitate ISC from S_{1} to T_{1}

■ Need a spin flip AND a change in orbital angular momentum by net e^{-}transfer between orbitals

- The orbitals should be metal-centered, have similar shapes and energies, but different m_{L} values

Intersystem Crossing in Octahedral Inorganic Complexes

■ Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
■ Following MLCT, consider the SOC interaction needed to facilitate ISC from S_{1} to T_{1}

- Need a spin flip AND a change in orbital angular momentum by net e^{-}transfer between orbitals

■ The orbitals should be metal-centered, have similar shapes and energies, but different m_{L} values

Intersystem Crossing in Square Planar Inorganic Complexes

- Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

■ Compare octahedral geometry to square planar

Intersystem Crossing in Square Planar Inorganic Complexes

■ Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged
■ Some examples of the HOMO and HOMO-1 energy gaps in photocatalysts

Intersystem Crossing in Square Planar Inorganic Complexes

- Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

■ Some examples of the HOMO and HOMO-1 energy gaps in photocatalysts

What Makes Ir the Basis for an Effective Photo(redox) Catalyst Class?

НОМО
LUMO

Homoleptic

■ 'Super reductant'

Heteroleptic

■ 'Super oxidant'

Dramatic modifications do not compromise access to the triplet excited state

- Appropriate MO energy ordering

■ Orbitals engaged in SOC have similar shape and energy -pseudo-octagedral geometry

- Ir low on the periodic table

$$
S O C \propto Z^{4}
$$

Overcomes descent in symmetry from O_{h} to C_{3} and even C_{1} (heteroleptic)

I
Does not hold for Ru

The Triplet Excited State of Iridium Photocatalysts

- We now have a model for ISC in pseudo-octahedral complexes (includes all of our Ir photocatalysts)
- The fine structure and properties of the T_{1} substates can tell us more about how our photocatalysts work

■ A simple model for these substates also suggests why Ir is such a versatile photo(redox) catalytic platform

Model for ISC in pseudo-octahedral complexes

The Triplet Excited State of $\operatorname{Ir}(p p y)_{3}$

- T_{1} state studied at low temperature to avoid thermal population of higher-energy vibrational modes

■ Some features to note about UV-Vis spectra:

still broad...

The Triplet Excited State of $\operatorname{Ir}(p p y)_{3}$

- T_{1} state studied at low temperature to avoid thermal population of higher-energy vibrational modes

■ Even higher resolution obtained by aiming at a single site and irradiating at a resonant wavelength
'site-selective exitation'

■ This experiment resolves the fine structure of T_{1}

- 3 substates are detected (makes sense for a triplet)

■ The highest-energy substate (III) is not observed in the emission spectrum

■ Only 0.1% thermally populated around 35 K , at which point resolution is already lost

■ Substate I lies at $19693 \mathrm{~cm}^{-1}=56.3 \mathrm{kcal} / \mathrm{mol}$ above S_{0}
II is $19 \mathrm{~cm}^{-1}=0.054 \mathrm{kcal} / \mathrm{mol}$ higher
III is $170 \mathrm{~cm}^{-1}=0.49 \mathrm{kcal} / \mathrm{mol}$ higher

The Triplet Excited State of $\operatorname{Ir}(p p y)_{3}$

- T_{1} state studied at low temperature to avoid thermal population of higher-energy vibrational modes

■ Even higher resolution obtained by aiming at a single site and irradiating at a resonant wavelength

Ir(ppy) ${ }_{3}$ Emission spectrum

The Triplet Excited State of $\operatorname{Ir}(p p y)_{3}$

■ T_{1} state studied at low temperature to avoid thermal population of higher-energy vibrational modes
■ Even higher resolution obtained by aiming at a single site and irradiating with the wavelength of substate III

$$
\operatorname{Ir}(p p y)_{3} \text { Emission spectrum }
$$

■ Only substate I emits below 3-4 K (substate II is $19 \mathrm{~cm}^{-1}$ higher)
■ Substate I is weakly emitting - intensity quickly surpassed by II
■ Substate II should be 0.5% of the Boltzmann population at 5.2 K

- Coupling to higher vibrational modes smears out fine structure around 25 K

The Triplet Excited State of $\operatorname{Ir}(p p y)_{3}$

■ The lifetimes and decay rates of each substate can also be measured

- The 3 substates behave very differently
direct measurement of $\tau_{1}-$
nothing else emits at 1.5 K

$\tau_{\| \mid}$and $\tau_{|| |}$are fit from the observed
average lifetimes at higher temperatures

Lifetimes vary by over an order of magnitude within T_{1}
$\operatorname{Ir}(p p y)_{3}$ Photoluminescence yield vs. T

enables determination of radiative and non-radiative decay rates

substate	I	II	III
$k_{\mathrm{r}}\left(\mathrm{s}^{-1}\right)$	5700	58000	2900000
$k_{\mathrm{nr}}\left(\mathrm{s}^{-1}\right)$	800	7000	10000

The Triplet Excited State of $\operatorname{Ir}(p p y)_{3}$

What can be learned from this information?
\square The overall picture of the T_{1} state is:

Excited state lifetimes

- Due to the energy gaps, the Boltzmann distribution at rt is 40 (I) : 38 (II) : 22 (III)
\square When one substate (III) has a much shorter lifetime, $\boldsymbol{\tau}_{\text {av }} \approx \boldsymbol{\tau}_{\text {III }} \div$ (\% population in III)
\square Effectively $\tau_{\mathrm{av}} \approx 5 \times \boldsymbol{\tau}_{\text {III }}$ for $\operatorname{Ir}(\mathrm{ppy})_{3}$
This general excited state structure holds across many photocatalysts
$\square 3$ substates including a 'dark' low-E and 'bright' high-E
- Exact lifetimes and energies vary substantially
- $\Delta \mathrm{E}(\mathrm{I}, \mathrm{III})$ is a proxy for strength of SOC \& is $\gg \Delta \mathrm{E}(1, \mathrm{II})$

The Triplet Excited State of $\operatorname{Ir}(p p y)_{3}$

What can be learned from this information?
\square The overall picture of the T_{1} state is:

\square The high and nearly temperature-invariant $\boldsymbol{\Phi}_{\mathrm{PL}}$ is also remarkable
■ Core features of Ir polypyridyls (pseudo- O_{h} and high Z) ensure broadly high SOC and $\boldsymbol{\Phi}_{\text {ISC }}$
■ Unlike other metals, almost all such Ir complexes have modest to excellent emission
■ Good rt emission is usually the exception and requires very specific ligand types (which may also be much more tedious to prepare than a ppy derivative)

- Other factors matter (non-radiative decay), but this feature reflects the consistently excellent access to the triplet excited state needed in photocatalysis when using Ir

The Triplet Excited State of Pseudo-octahedral Complexes

■ The qualitative description of the T_{1} state of $\operatorname{Ir}(\mathrm{ppy})_{3}$ also describes almost all pseudo- O_{h} polypyridyls

The First Excited State of Pseudo-octahedral Complexes

■ A very simple semi-empirical model predicts this structure with few a priori assumptions
■ This 'pseudo angular momentum' model is constructred in the following manner:

A Model for the First Excited State of Octahedral Complexes

■ First, list the orbitals and quantum numbers available to the electron and hole
■ As seen earlier in MO diagrams for O_{h}, the ground state LUMO (excited state HOMO) is a $\mathrm{T}_{1 \mathrm{u}}$ representation of ligand-centered π^{*} orbitals, call them $\pi_{\mathrm{Lx}}{ }^{*}, \pi_{\mathrm{Ly}}{ }^{*}$, and $\pi_{\mathrm{Lz}}{ }^{*}$

■ As for p orbitals in O_{h}, the $3 T_{1 u}$ wavefunctions may be given by the linear combination of these orbitals

$$
\operatorname{LUMO}\left(L_{z}=0\right)=\frac{\pi_{\mathrm{Lx}}{ }^{*}+\pi_{\mathrm{L} y}{ }^{*}+\pi_{\mathrm{L} z}{ }^{*}}{\sqrt{3}} \quad \operatorname{LUMO}\left(L_{z}= \pm 1\right)=\frac{\pi_{\mathrm{L} z}{ }^{*}+e^{ \pm 2 \pi i / 3} \pi_{\mathrm{Lx}}{ }^{*}+e^{\mp 2 \pi i / 3} \pi_{\mathrm{L} y}{ }^{*}}{\sqrt{3}}
$$

where L_{z} denotes the z-component orbital angular momentum of each wavefunction
\square NOTE: this model is termed 'pseudo angular momentum' because it treats the threefold-degenerate $T_{2 g}$ and $\mathrm{T}_{1 \mathrm{u}}$ levels in isolation from the rest of the molecule, assigning them an orbital angular momentum of $L=1$

- This strategy drastically simplifies the theory and is consistent with the familiar atomic orbital analogy of the $L=1$ level (p orbitals) that are threefold degenerate in O_{h}

A Model for the First Excited State of Octahedral Complexes

■ First, list the orbitals and quantum numbers available to the electron and hole
\square The ground state HOMO (excited state LUMO) is a $T_{2 g}$ representation of metal-centered d orbitals $\left(\mathrm{d}_{x y}, \mathrm{~d}_{x z}, \mathrm{~d}_{y z}\right)$ and ligand-centered π orbitals ($\pi_{\mathrm{Lx}}, \pi_{\mathrm{L} y}$, and π_{Lz}) which may be expressed as

$$
\operatorname{HOMO}\left(L_{z}=0\right)=\frac{\mathrm{d}_{x y}+\mathrm{d}_{x z}+\mathrm{d}_{y z}}{\sqrt{3}} \cos \theta+\frac{\pi_{\mathrm{Lx}}{ }^{*}+\pi_{\mathrm{L} y}{ }^{*}+\pi_{\mathrm{Lz}}{ }^{*}}{\sqrt{3}} \sin \theta
$$

$$
\operatorname{HOMO}\left(L_{z}= \pm 1\right)=\frac{\mathrm{d}_{x y}+e^{ \pm 2 \pi i / 3} \mathrm{~d}_{x z}+e^{\mp 2 \pi i / 3} \mathrm{~d}_{y z}}{\sqrt{3}} \cos \theta+\frac{\pi_{\mathrm{Lz}}{ }^{*}+e^{ \pm 2 \pi i / 3} \pi_{\mathrm{Ly}}{ }^{*}+e^{\mp 2 \pi i / 3} \pi_{\mathrm{Lx}}{ }^{*}}{\sqrt{3}} \sin \theta
$$

- The $\cos \theta$ and $\sin \theta$ terms represent the extent of mixing in the HOMO

■ Calculations for $\operatorname{Ir}(\mathrm{ppy})_{3}$ suggest that the HOMO is $\sim 50 \%$ metal- and ligand-centered, so we will use $\theta=\pi / 4$ for this illustration

$\begin{array}{ll}\text { spin-spin interaction } & \uparrow+\uparrow \\ \text { spin-orbit interaction } & \uparrow \text { only }\end{array}$

A Model for the First Excited State of Octahedral Complexes

- We can now begin building the energetic model for the excited state

■ As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}
$$

- Constants J and λ can be adjusted to capture the strength of the spin-spin and spin-orbit interactions
- From empirical data, we can extract these values for compounds we intend to model from the expressions $J=J_{\pi} \sin ^{2} \theta$ (from the ligand) and $\lambda=\lambda_{d} \sin ^{2} \theta$ (from the metal)
■ Again using $\operatorname{Ir}(\mathrm{ppy})_{3}$ as a example, we can use the values $J_{\pi}=2 \mathrm{eV}$ (for ppy), $\lambda_{d}=0.43 \mathrm{eV}$ (for Ir), and $\theta \approx \pi / 4$ to represent equal metal and ligand contributions to the HOMO to obtain example constants

$$
\begin{array}{ll}
J \approx 1 \mathrm{eV} & \text { for } \operatorname{Ir}(p p y)_{3} \\
\lambda \approx 0.215 \mathrm{eV} & \text { for } \operatorname{lr}(\mathrm{ppy})_{3}
\end{array}
$$

A Model for the First Excited State of Octahedral Complexes

- We can now begin building the energetic model for the excited state

■ As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}
$$

- $\vec{L}_{\text {LUMO }}$ is not part of this model, so we may disregard it (a further simplification)

■ As presented earlier, the total angular momentum is a conserved quantity, and here is expressed as

$$
\vec{I}=\vec{L}+\overrightarrow{\boldsymbol{S}} \quad \text { total angular momentum }
$$

I is therefore a quantum number with the range

$$
I=|L-S|,|L-S|+1, \ldots L+S-1, L+S
$$

■ The results of this work are obtained by numerical solutions using the specified Hamiltonians, but the simplicity of the model is evident from the ability to capture nearly the entire solution to the octahedral model from a few quantum mechanical identities and relationships

spin-spin interaction
spin-orbit interaction \uparrow only

A Model for the First Excited State of Octahedral Complexes

- We can now begin building the energetic model for the excited state

■ As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}
$$

■ The following identities and relations help simplify this Hamiltonian:
simple addition of two spins

$$
\left(\overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}+\overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}\right)^{2}=1 \quad \text { (for any triplet) } \quad\left(\overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}+\overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}\right)^{2}=0 \quad \text { (for any singlet) }
$$

expansion of the above 'quadratic' expression

$$
\left(\overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}+\overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}\right)^{2}=\overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}{ }^{2}+\overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}{ }^{2} \pm 2 \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}} \quad \text { (for triplets and singlets, respectively) }
$$

the quantized magnitude of spin angular momentum

$$
\overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}{ }^{2}=\overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}{ }^{2}=3 / 4 \quad \text { (for any single spin) }
$$

substitution of the identities into the expanded expression then gives

$$
\begin{array}{ll}
1=3 / 4+3 / 4+2 \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}} \Rightarrow & \begin{array}{l}
\overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}=-1 / 4 \\
0=3 / 4+3 / 4-2 \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}} \Rightarrow
\end{array} \begin{array}{l}
\text { (for triplets) } \\
\overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}=+3 / 4
\end{array} \quad \text { (for singlets) }
\end{array}
$$

These values are the first part of the expression for $H\left(O_{h}\right)$

A Model for the First Excited State of Octahedral Complexes

- We can now begin building the energetic model for the excited state

■ As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}
$$

- The following identities and relations help simplify this Hamiltonian:
partial expansion of the total angular momentum of the system (recall that we can neglect $L_{\text {LUMO }}$)
and substituting in the following values

$$
\overrightarrow{I^{2}}=I(I+1) \quad \text { (the expression for the magnitude of any quantum number) }
$$

$$
\vec{L}_{\text {Номо }}{ }^{2}=L_{\text {Номо }}\left(L_{\text {HOMO }}+1\right)=1(1+1)=2 \quad \text { (as above and since } L_{\text {HOMO }}=1 \text { for this model) }
$$

$$
\vec{L}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {LUMO }}=0 \quad \text { (since the LUMO is metal-free and thus does not involve a strong SOC term) }
$$

$$
\left(\overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}+\overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}\right)^{2}=1,0 \quad \text { (for triplets and singlets, respectively) }
$$

leads to the simplified relationship

$$
\begin{aligned}
& I(I+1)=2+2 \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}+1 \Rightarrow \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}=\frac{3-I(I+1)}{2} \quad \text { (for triplets) } \\
& I(I+1)=2+2 \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}+0 \Rightarrow \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}=\frac{2-I(I+1)}{2} \quad \text { (for singlets) }
\end{aligned}
$$

A Model for the First Excited State of Octahedral Complexes

- We can now begin building the energetic model for the excited state

■ As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}
$$

- Lastly, using the range of possible values for total angular momentum /

$$
\begin{aligned}
I= & I L-S I, I L-S I+1, \ldots L+S-1, L+S \\
& \Rightarrow I=0,1,2 \quad \text { (for triplets, as } L=1 \text { and } S=1) \text { and } \quad I=0 \quad(\text { for singlets, as } L=1 \text { and } S=0)
\end{aligned}
$$

enables substate-dependent solutions for the spin-orbit term

$$
\begin{array}{ll}
\vec{L}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}=+3 / 2 & (\text { for triplets with } I=0) \\
\overrightarrow{\boldsymbol{L}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}=+1 / 2 & (\text { for triplets with } I=1) \\
\vec{L}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}=-3 / 2 & (\text { for triplets with } I=2) \\
\overrightarrow{\boldsymbol{L}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}=0 & (\text { for singlets, } I=1)
\end{array}
$$

leads to the simplified relationship

$$
\begin{aligned}
& I(I+1)=2+2 \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}+1 \Rightarrow \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}=\frac{3-I(I+1)}{2} \quad \text { (for triplets) } \\
& I(I+1)=2+2 \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}+0 \Rightarrow \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}=\frac{2-I(I+1)}{2} \quad \text { (for singlets) }
\end{aligned}
$$

A Model for the First Excited State of Octahedral Complexes

- We can now begin building the energetic model for the excited state

■ As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}
$$

- Lastly, using the range of possible values for total angular momentum /

$$
\begin{aligned}
I= & I L-S I, I L-S I+1, \ldots L+S-1, L+S \\
& \Rightarrow I=0,1,2 \quad \text { (for triplets, as } L=1 \text { and } S=1) \text { and } \quad I=0 \quad(\text { for singlets, as } L=1 \text { and } S=0)
\end{aligned}
$$

enables substate-dependent solutions for the spin-orbit term

$$
\begin{array}{ll}
\overrightarrow{\boldsymbol{L}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{s}}_{\text {HOMO }}=+3 / 2 & (\text { for triplets with } I=0) \\
\overrightarrow{\boldsymbol{L}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}=+1 / 2 & (\text { for triplets with } I=1) \\
\overrightarrow{\boldsymbol{L}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}=-3 / 2 & (\text { for triplets with } I=2) \\
\overrightarrow{\boldsymbol{L}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}=0 & (\text { for singlets, } I=1)
\end{array}
$$

lastly, recalling that the spin-spin term is evaluated as

$$
\begin{array}{l|l}
\overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}=-1 / 4 & \text { (for triplets) } \\
\overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}=+3 / 4 & \text { (for singlets) }
\end{array}
$$

and since the Hamiltonian operator corresponds to the energies of the wavefunctions ψ that are solutions to the Schrödinger equation

$$
\hat{H} \psi=E \psi
$$

A Model for the First Excited State of Octahedral Complexes

- We can now begin building the energetic model for the excited state

■ As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}
$$

■ Application of the previous relationships then lead to the following expressions for the energy levels

```
E/J=-3/2 \lambda/J 1/4 (for triplets with /= 0)
E/J=+1/2 \lambda/J-1/4 (for triplets with I= 1) E/ J=+3/4 (for singlets, I = 1)
E/J=+3/2 \lambda/J-1/4 (for triplets with I= 2)
```


A Model for the First Excited State of Octahedral Complexes

- The pseudo orbital angular momentum model for the excited state energies of octahedral complexes is thus

| $\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \vec{S}_{\mathrm{HOMO}} \cdot \vec{S}_{\mathrm{LUMO}}+\lambda \vec{L}_{\mathrm{HOMO}} \cdot \vec{S}_{\mathrm{HOMO}}$ | $E / J=-3 / 2 \lambda / J-1 / 4$
 $E / J=+1 / 2 \lambda / J-1 / 4$ | (for triplets with $/=0$) |
| :--- | :--- | :--- | :--- |
| $E / J=+3 / 4$ | (for singlets, $I=1)$ | |

■ Results of this study are presented as plots of E as the constant terms in its expressions are varied
\square Since this model makes only relative predictions for E, results are scaled by spin-spin term J

A Model for the First Excited State of Octahedral Complexes

- The pseudo orbital angular momentum model for the excited state energies of octahedral complexes is thus

| $\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \vec{S}_{\mathrm{HOMO}} \cdot \vec{S}_{\mathrm{LUMO}}+\lambda \vec{L}_{\mathrm{HOMO}} \cdot \vec{S}_{\mathrm{HOMO}}$ | $E / J=-3 / 2 \lambda / J-1 / 4$
 $E / J=+1 / 2 \lambda / J-1 / 4$ | (for triplets with $/=0$) |
| :--- | :--- | :--- | :--- |
| $E / J=+3 / 4$ | (for singlets, $I=1)$ | |

■ Results of this study are presented as plots of E as the constant terms in its expressions are varied
\square Since this model makes only relative predictions for E, results are scaled by spin-spin term J

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

- The next step in this model is to descend in symmetry to $D_{3}\left(\right.$ or $\left.C_{3}\right)$ by adding a perturbation term to O_{h}

■ As seen earlier, this is a reasonable assumption for relevant pseudo-octahedral complexes since the splitting among $d \pi_{M}$ orbitals is much less than the $T_{1}-S_{0}$ gap

$$
\hat{H}(\text { trig })=\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)+\text { perturbation }=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}+\text { perturbation }
$$

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

- The next step in this model is to descend in symmetry to $\mathrm{D}_{3}\left(\right.$ or $\left.\mathrm{C}_{3}\right)$ by adding a perturbation term to O_{h}

■ As seen earlier, this is a reasonable assumption for relevant pseudo-octahedral complexes since the splitting among $d \pi_{M}$ orbitals is much less than the $T_{1}-S_{0}$ gap

$$
\hat{H}(\text { trig })=\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)+\text { perturbation }=J \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}+\text { perturbation }
$$

■ What should this perturbation term be, however? What will its effect be?
■ Consider a general 3-component system with trigonal ($\mathrm{D}_{3}, \mathrm{C}_{3}$, etc.) symmetry

- Chosen since the 3-component HOMO and LUMO of the excited state are descending to these symmetries
- The Hückel model for the energy of such a system is

$$
\hat{H} \psi=E \psi \quad \text { with } \quad \hat{H} \psi=\left[\begin{array}{ccc}
\alpha & \beta & \beta \\
\beta & \alpha & \beta \\
\beta & \beta & \alpha
\end{array}\right] \quad \begin{aligned}
& \alpha=\text { energy of each component } \\
& \beta=\text { exchange energy between components }
\end{aligned}
$$

we want to find E and ψ, which will be some linear combination of the orbitals of the 3 components

$$
\psi=\left[\begin{array}{c}
c_{1} \phi_{1} \\
c_{2} \phi_{2} \\
c_{3} \phi_{3}
\end{array}\right] \quad \phi_{1}, \phi_{2}, \phi_{3}=\text { the orbitals of each component of the system }
$$

finding the solution to this system thus amounts to solving

$$
(\hat{H}-E) \psi=0 \Rightarrow\left[\begin{array}{ccc}
\alpha-E & \beta & \beta \\
\beta & \alpha-E & \beta \\
\beta & \beta & \alpha-E
\end{array}\right]\left[\begin{array}{c}
c_{1} \phi_{1} \\
c_{2} \phi_{2} \\
c_{3} \phi_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha-E & \beta & \beta \\
\beta & \alpha-E & \beta \\
\beta & \beta & \alpha-E
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]\left[\phi_{1}, \phi_{2}, \phi_{3}\right]=0
$$

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

\square Since the orbitals of the 3 components are non-zero, we must solve the system of equations

$$
\left[\begin{array}{ccc}
c_{1}(\alpha-E) / \beta & c_{2} & c_{3} \\
c_{1} & c_{2}(\alpha-E) / \beta & c_{3} \\
c_{1} & c_{2} & c_{3}(\alpha-E) / \beta
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \text { or }\left[\begin{array}{ccc}
c_{1} x & c_{2} & c_{3} \\
c_{1} & c_{2} x & c_{3} \\
c_{1} & c_{2} & c_{3} x
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \text { using } x=(\alpha-E) / \beta
$$

we can arrive at reduced row echelon form by the sequence

$$
\begin{aligned}
& \begin{array}{l}
(3)-(2)
\end{array}\left[\begin{array}{ccc}
c_{1} x & c_{2} & c_{3} \\
0 & c_{2}(x-1)(x+1) & c_{3}(x-1) \\
0 & c_{2}(x-1)(x+1) & c_{3}(x-1)(x+1)^{2}
\end{array}\right] \stackrel{(3) \times(x+1)}{\stackrel{~}{4}}\left[\begin{array}{ccc}
c_{1} x & c_{2} & c_{3} \\
0 & c_{2}(x-1)(x+1) & c_{3}(x-1) \\
0 & c_{2}(x-1) & c_{3}(x-1)(x+1)
\end{array}\right] \\
& {\left[\begin{array}{ccc}
c_{1} x & c_{2} & c_{3} \\
0 & c_{2}(x-1)(x+1) & c_{3}(x-1) \\
0 & 0 & c_{3}\left[(x-1)(x+1)^{2}-(x-1)\right]
\end{array}\right] \begin{array}{cc}
(1) \times x(x-1)(x+2) \\
\begin{array}{ccc}
(2) \times x(x+2) \\
\text { simplify (3) }
\end{array}
\end{array}\left[\begin{array}{ccc}
c_{1} x^{2}(x-1)(x+2) & c_{2} x(x-1)(x+2) & c_{3} x(x-1)(x+2) \\
0 & c_{2} x(x-1)(x+1)(x+2) & c_{3} x(x-1)(x+2) \\
0 & 0 & c_{3} x(x-1)(x+2)
\end{array}\right]} \\
& (1)-(3) \downarrow(2)-(3) \\
& {\left[\begin{array}{ccc}
c_{1} x^{2}(x-1)(x+1)(x+2) & 0 & 0 \\
0 & c_{2} x(x-1)(x+1)(x+2) & 0 \\
0 & 0 & c_{3} x(x-1)(x+2)
\end{array}\right] \stackrel{(1) \times(x+1)-(2)}{\rightleftarrows}\left[\begin{array}{ccc}
c_{1} x^{2}(x-1)(x+2) & c_{2} x(x-1)(x+2) & 0 \\
0 & c_{2} x(x-1)(x+1)(x+2) & 0 \\
0 & 0 & c_{3} x(x-1)(x+2)
\end{array}\right]}
\end{aligned}
$$

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

\square With the system simplified to

$$
\left[\begin{array}{ccc}
c_{1} x^{2}(x-1)(x+1)(x+2) & 0 & 0 \\
0 & c_{2} x(x-1)(x+1)(x+2) & 0 \\
0 & 0 & c_{3} x(x-1)(x+2)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \text { and } x=(\alpha-E) / \beta
$$

\square We have solutions for x of $x=-2,-1,0,+1$, but substitution of $x=-1$ or $x=0$ into $\left[\begin{array}{ccc}c_{1} x & c_{2} & c_{3} \\ c_{1} & c_{2} x & c_{3} \\ c_{1} & c_{2} & c_{3} x\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ both quickly lead to rref $\left[\begin{array}{ccc}c_{1} & 0 & 0 \\ 0 & c_{2} & 0 \\ 0 & 0 & c_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ (a meaningless solution)
$\square x=-2$ corresponds to $\mathrm{E}=\alpha+2 \beta$ and substitution into the original matrix leads to

$$
\left[\begin{array}{ccc}
-2 c_{1} & c_{2} & c_{3} \\
c_{1} & -2 c_{2} & c_{3} \\
c_{1} & c_{2} & -2 c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { and rref }\left[\begin{array}{ccc}
c_{1} & -c_{2} & 0 \\
0 & c_{2} & -c_{3} \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow \begin{gathered}
c_{1}=\boldsymbol{c}_{2}=\boldsymbol{c}_{3} \\
\text { (we are free to choose the value) }
\end{gathered}
$$

$\square x=+1$ corresponds to $E=\alpha-\beta$ and substitution into the original matrix leads to
$\left[\begin{array}{lll}c_{1} & c_{2} & c_{3} \\
c_{1} & c_{2} & c_{3} \\
c_{1} & c_{2} & c_{3}\end{array}\right]=\left[\begin{array}{l}0 \\
0 \\
0\end{array}\right]$ and rref \(\left[$$
\begin{array}{ccc}c_{1} & c_{2} & c_{3} \\
0 & 0 & 0 \\
0 & 0 & 0\end{array}
$$\right]=\left[\begin{array}{l}0

0

0\end{array}\right] \Rightarrow\)| $c_{1}=-\left(c_{2}+c_{3}\right)$ (degenerate) |
| :---: |
| (choose any 2 pairs of c_{2} and $\left.c_{3}\right)$ |

- We may select any values, and it is tempting to use 1 or other simple real numbers, but if we select
for $x=-2(E=\alpha+2 \beta)$,
and for $x=+1(E=\alpha-\beta)$,
(has 2 solutions)

$$
c_{1}=c_{2}=c_{3}=1 / \sqrt{3}
$$

$$
\begin{aligned}
& c_{2}=e^{ \pm 2 \pi i / 3} / \sqrt{3}=-1 /(2 \sqrt{3}) \pm 1 / 2 i \\
& c_{3}=e^{\mp 2 \pi i / 3} / \sqrt{3}=-1 /(2 \sqrt{3}) \mp 1 / 2 i
\end{aligned}, \quad c_{1}=1 / \sqrt{3}
$$

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

■ Then the solutions to our 3-component system are

$$
E_{1}=\alpha+2 \beta \quad \psi_{1}=\frac{\phi_{1}+\phi_{2}+\phi_{3}}{\sqrt{3}} \quad E_{2,3}=\alpha-\beta \quad \psi_{2,3}=\frac{\phi_{1}+e^{ \pm 2 \pi i / 3} \phi_{2}+e^{\mp 2 \pi i / 3} \phi_{3}}{\sqrt{3}}
$$

this is the a general model for any system of 3 equivalent components, symmetrically positioned in a trigonal point group, that have an exchange interaction

■ Critically, if we compare this solution to our model for the HOMO and LUMO of metal polypyridyls...
$\operatorname{HOMO}\left(L_{z}=0\right)=\frac{\mathrm{d}_{x y}+\mathrm{d}_{x z}+\mathrm{d}_{y z}}{\sqrt{3}} \cos \theta+\frac{\pi_{\mathrm{Lx}}{ }^{*}+\pi_{\mathrm{Ly}}{ }^{*}+\pi_{\mathrm{Lz}}{ }^{*}}{\sqrt{3}} \sin \theta$
$\operatorname{HOMO}\left(L_{z}= \pm 1\right)=\frac{\mathrm{d}_{x y}+e^{ \pm 2 \pi i / 3} \mathrm{~d}_{x z}+e^{\mp 2 \pi i / 3} \mathrm{~d}_{y z}}{\sqrt{3}} \cos \theta+\frac{\pi_{\mathrm{Lz}}{ }^{*}+e^{ \pm 2 \pi i / 3} \pi_{\mathrm{Ly}}{ }^{*}+e^{\mp 2 \pi i / 3} \pi_{\mathrm{Lx}}{ }^{*}}{\sqrt{3}} \sin \theta$
$\operatorname{LUMO}\left(L_{z}=0\right)=\frac{\pi_{\mathrm{Lx}}{ }^{*}+\pi_{\mathrm{L} y}{ }^{*}+\pi_{\mathrm{Lz}}{ }^{*}}{\sqrt{3}} \quad \operatorname{LUMO}\left(L_{z}= \pm 1\right)=\frac{\pi_{\mathrm{Lz}}{ }^{*}+e^{ \pm 2 \pi i / 3} \pi_{\mathrm{Ly}}{ }^{*}+e^{\mp 2 \pi i / 3} \pi_{\mathrm{Lx}}{ }^{*}}{\sqrt{3}}$
The solutions are constructed in the exact same manner from their constituent orbitals

This is an appropriate model for the descent in symmetry from O_{h} to D_{3} or C_{3}

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

- Descending from O_{h} to D_{3} or C_{3}, the previously 3-fold degenerate HOMO and LUMO are split

■ Comparing the form of the trigonal symmetry model

$$
E_{1}=\alpha+2 \beta \quad \psi_{1}=\frac{\phi_{1}+\phi_{2}+\phi_{3}}{\sqrt{3}} \quad E_{2,3}=\alpha-\beta \quad \psi_{2,3}=\frac{\phi_{1}+e^{ \pm 2 \pi i / 3} \phi_{2}+e^{\mp 2 \pi i / 3} \phi_{3}}{\sqrt{3}}
$$

to the wavefunctions used to model the excited state of photocatalysts,

$$
\operatorname{LUMO}\left(L_{z}=0\right)=\frac{\pi_{\mathrm{Lx}}{ }^{*}+\pi_{\mathrm{Ly}}{ }^{*}+\pi_{\mathrm{Lz}}{ }^{*}}{\sqrt{3}} \quad \operatorname{LUMO}\left(L_{z}= \pm 1\right)=\frac{\pi_{\mathrm{Lz}}{ }^{*}+e^{ \pm 2 \pi i / 3} \pi_{\mathrm{Ly}}{ }^{*}+e^{\mp 2 \pi i / 3} \pi_{\mathrm{Lx}}{ }^{*}}{\sqrt{3}}
$$

the $L_{z}= \pm 1$ LUMO remains 2-fold degenerate, but separates from the $L_{z}=0$ level by $E=3 \beta$
(the result is also true for the HOMO, though β need not have the same value in both cases)
\square If we define these splittings as Δ for the HOMO and Γ for the LUMO, but first
\square We have generally ignored $L_{z}($ LUMO $)$ and will do so here, it adds 2 degenerate solutions higher by Γ
■ Recognize that we need a term that separates the $L_{z}= \pm 1$ levels from the $L_{z}=0$ level
we may write the following model for the excited state of a trigonal pseudo-octahedral complex

$$
\hat{H}(\text { trig })=J \overrightarrow{\boldsymbol{s}}_{\text {Номо }} \cdot \overrightarrow{\boldsymbol{s}}_{\text {LUMO }}+\lambda \overrightarrow{\boldsymbol{L}}_{\text {Номо }} \cdot \overrightarrow{\boldsymbol{s}}_{\text {Номо }}+\Delta\left(L_{z}\right)^{2}
$$

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

■ In terms of a molecular orbital level diagram, we get the a result that makes sense:

$$
\hat{H}(\text { trig })=J \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}+\Delta\left(L_{z}\right)^{2}
$$

\square Effect of the perturbation to $\mathrm{O}_{\mathrm{h}}-\Delta\left(L_{z}\right)^{2}$

- The perturbation stabilizes the HOMO and destabilizes the LUMO as shown since the e solutions interact but the a_{1} and a_{2} solutions may not due to symmetry
- The magnitude of the splitting is lower in C_{3} since the distinct a_{1} and a_{2} orbitals inheret the same symmetry (a)

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

■ The descent from O_{h} to trigonal symmetry lifts many substate degeneracies, leaves 3 low- E triplets

Octahedral model

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\text {Номо }} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\text {НомО }} \cdot \overrightarrow{\boldsymbol{s}}_{\text {Номо }}
$$

Trigonal model

$$
\hat{H}(\text { trig })=J \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}}+\Delta\left(L_{z}\right)^{2}
$$

For $\operatorname{Ir}(\mathrm{ppy})_{3}$:
$J \approx 1 \mathrm{eV}, \lambda \approx 0.22 \mathrm{eV}, \Delta \approx 0.14 \mathrm{eV}$, so $\lambda / J \approx 0.22, \Delta / J \approx 0.14$

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

■ The descent from O_{h} to trigonal symmetry lifts many substate degeneracies, leaves 3 low- E triplets

Octahedral model
Trigonal model

$$
\hat{H}\left(\mathrm{O}_{\mathrm{h}}\right)=J \overrightarrow{\boldsymbol{s}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{s}}_{\text {HOMO }} \quad \hat{H}\left(\text { (trig) }=J \overrightarrow{\boldsymbol{s}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{s}}_{\text {LUMO }}+\lambda \overrightarrow{\boldsymbol{L}}_{\text {НОМО }} \cdot \overrightarrow{\boldsymbol{s}}_{\text {HOMO }}+\Delta\left(L_{z}\right)^{2}\right.
$$

For $\operatorname{Ir}(\mathrm{ppy})_{3}$:
$J \approx 1 \mathrm{eV}, \lambda \approx 0.22 \mathrm{eV}, \Delta \approx 0.14 \mathrm{eV}$, so $\lambda / J \approx 0.22, \Delta / J \approx 0.14$

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

■ The descent from O_{h} to trigonal symmetry lifts many substate degeneracies, leaves 3 low- E triplets

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

- The descent from O_{h} to trigonal symmetry lifts many substate degeneracies, leaves 3 low- E triplets

$$
\begin{aligned}
& \mathrm{ML}_{6}{ }^{\mathrm{n}+}\left(\mathrm{O}_{\mathrm{h}}\right) \quad \mathrm{ML}_{6}{ }^{\mathrm{n}+}\left(\mathrm{D}_{3}\right) \\
& t_{1 u} \frac{\uparrow}{\pi^{*} L} \longrightarrow \frac{e}{a_{2}} \frac{e^{\prime}}{\pi^{*} L} \\
& L_{z}=0 \text { are the lowest }-E \text { substates }
\end{aligned}
$$

Trigonal model

$$
\hat{H}(\text { trig })=J \overrightarrow{\boldsymbol{S}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}+\Delta\left(L_{z}\right)^{2}
$$

Effect of $\Delta-$ raises E unless $L_{z}=0$

Leaves 3 low- E triplets (one $I=0$ and two $I=1$)

- More realistic than O_{h}, but 2 of the 3 substates of T_{1} remain degenerate

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

■ The descent from O_{h} to trigonal symmetry lifts many substate degeneracies, leaves 3 low- E triplets

these are the lowest blue and black lines what do these substates look like?

Effect of $\Delta-$ raises E unless $L_{z}=0$

Leaves 3 low- E triplets (one $I=0$ and two $I=1$)

- More realistic than O_{h}, but 2 of the 3 substates of T_{1} remain degenerate

A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

\square The descent from O_{h} to trigonal symmetry lifts many substate degeneracies, leaves 3 low- E triplets

Effect of $\Delta-$ raises E unless $L_{z}=0$

Leaves 3 low- E triplets (one $I=0$ and two $I=1$)

- More realistic than O_{h}, but 2 of the 3 substates of T_{1} remain degenerate

A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

- The final step is to descend from trigonal symmetry $\left(\mathrm{D}_{3}\right.$ or $\left.\mathrm{C}_{3}\right)$ to 'broken' trigonal symmetry

■ This symmetry change may come from treating an excited state as localized or by considering a heteroleptic photocatalyst instead of a homoletpic one

- This is a perturbation to trigonal symmetry, in analogy to trigonal symmetry as a perturbation of O_{h}
\square We introduce a term δ which alters the energy of states with net orbital angular momentum in x, y

$$
\hat{H}\left(\text { trig }^{\prime}\right)=J \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{LUMO}}+\lambda \overrightarrow{\boldsymbol{L}}_{\mathrm{HOMO}} \cdot \overrightarrow{\boldsymbol{s}}_{\mathrm{HOMO}}+\Delta\left(L_{z}\right)^{2}+\delta\left[\left(L_{x}\right)^{2}-\left(L_{y}\right)^{2}\right]
$$

A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

- The descent from trigonal to borken trigonal symmetry lifts all degeneracies

■ Focus on the T_{1} substates - the entire picture is very complex and adds little information

Trigonal model
$\hat{H}($ trig $)=J \overrightarrow{\boldsymbol{S}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {LUMO }}+\lambda \overrightarrow{\boldsymbol{L}}_{\text {НОМО }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}+\Delta\left(L_{z}\right)^{2}$

Broken trigonal model

$$
\hat{H}\left(\text { trig }^{\prime}\right)=\hat{H}(\text { trig })+\delta\left[\left(L_{x}\right)^{2}-\left(L_{y}\right)^{2}\right]
$$

■ Describes the T_{1} state as 3 substates

- 1 non-degenerate with $I=0$, lowest- E
$\square 2$ degenerate with $I=1$, next-to-lowest- E
\square Descent from O_{h} to trigonal leaves these substates as low- E due to a lack of z-orbital angular momentum

A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

- The descent from trigonal to borken trigonal symmetry lifts all degeneracies

■ Focus on the T_{1} substates - the entire picture is very complex and adds little information

Trigonal model
$\hat{H}($ trig $)=J \overrightarrow{\boldsymbol{S}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {LUMO }}+\lambda \overrightarrow{\boldsymbol{L}}_{\text {НОМО }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}+\Delta\left(L_{z}\right)^{2}$

Broken trigonal model

$$
\hat{H}(\text { trig' })=\hat{H}(\text { trig })+\delta\left[\left(L_{x}\right)^{2}-\left(L_{y}\right)^{2}\right]
$$

■ Describes the T_{1} state as 3 substates

- 1 non-degenerate with $I=0$, lowest- E
$\square 2$ degenerate with $I=1$, next-to-lowest- E
\square Descent from O_{h} to trigonal leaves these substates as low- E due to a lack of z-orbital angular momentum

A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

- The descent from trigonal to borken trigonal symmetry lifts all degeneracies

■ Focus on the T_{1} substates - the entire picture is very complex and adds little information

Trigonal model
$\hat{H}($ trig $)=J \overrightarrow{\boldsymbol{S}}_{\text {HOMO }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {LUMO }}+\lambda \overrightarrow{\boldsymbol{L}}_{\text {НОМО }} \cdot \overrightarrow{\boldsymbol{S}}_{\text {HOMO }}+\Delta\left(L_{z}\right)^{2}$

\square Describes the T_{1} state as 3 substates

- 1 non-degenerate with $I=0$, lowest $-E$
$\square 2$ degenerate with $I=1$, next-to-lowest- E
■ Descent from O_{h} to trigonal leaves these substates as low- E due to a lack of z-orbital angular momentum

Broken trigonal model

$$
\hat{H}\left(\text { trig }^{\prime}\right)=\hat{H}(\text { trig })+\delta\left[\left(L_{x}\right)^{2}-\left(L_{y}\right)^{2}\right]
$$

■ Splits the low-lying $I=1$ substate
■ Due to their disparate $L_{x, y}$ values
■ Allows assignment of substates I, II, III

- As in real systems, $\Delta \mathrm{E}(\mathrm{II}, \mathrm{III}) \gg \Delta \mathrm{E}(\mathrm{I}, \mathrm{II})$

A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

- A summary of the pseudo angular momentum model

Octahedral model \quad Trigonal model \quad Broken trigonal model $\operatorname{Ir}(p p y)_{3} T_{1}$ substates

A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

■ Some key conclusions from the pseudo angular momentum model

- The energetic structure underlying our photocatalysts derive from a few simple general molecular features

■ Earlier consideration of intersystem crossing showed that the global structure of excited state energies resulting from octahedral or near-octahedral geometry was essential to photocatalyst generality

■ Given appropriate ligand/metal energies and strong spin-orbit coupling, this model suggests that the fine structure of the excited state energies can also be seen as a consequence of pseudo-octahedral geometry

Appreciable changes to the ligand framework to adjust specific properties do not compromise the generally desired reactivity

