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What Makes an Effective Photo(redox) Catalyst Class?
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strong oxidant

E1/2 = +0.31 V

strong reductant

E1/2 = –1.73 V
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Strong absorption 
in visible region

Efficient 
ISC

Long-lived T1

High-energy T1 Wide & modular redox window

All properties should remain intact as we move the redox window

High stability
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Several metals have been 
successfully employed

Photo(redox) Catalysis with Inorganic Complexes
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Ir(ppy)3
+0.31
–1.73

Ir(ppy)2(bpy)+

+0.68
–0.79

Ir(bpy)3
3+

+1.81
–0.88

� Strong reductant

Wide redox window� Accommodate bpy-type 
and ppy-type ligands

� HOMO and LUMO 
spatially separated – can 

be modified independently
Highly tunable

HeterolepticHomoleptic Synthetic challenge

E(IrIV/III*) / V
E(IrIII*/II) / V

� Intermediate potentials � Strong oxidant
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Iridium Provides a General Platform for Photo(redox) Catalysts

Arias-Rotondo, D. M.; McCusker, J. K. Chem. Soc. Rev. 2016, 45, 5803.
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� ‘Super reductant’ � ‘Super oxidant’

Dramatic modifications 
do not compromise 

fundamental photo(redox) 
catalytic properties

Iridium Provides a General Platform for Photo(redox) Catalysts

Not demonstrated with 
other metal centers



Outline

� Introduction to spin-orbit coupling

� Role of spin-orbit coupling in intersystem crossing

� The triplet excited state of Ir(ppy)3

� A simple model for photophysical properties of 6-coordinate complexes



Absorption and Emission Spectra

Emission Spectrum of Carbon

� Atomic/molecular fingerprints allowing the assignment of excited state energies

C
6 12.01

2.55

[He]2s22p2

Excited State Energies and Configurations

� Sorted first by principal and secondary quantum numbers

� E (n = 1) < E (n = 2) < E (n = 3) < …

� E (l = 0, s orbital) < E (l = 1, p orbital) < E (l = 2, d orbital) < …

� Fine structure gives richer information about electronic configuration

Atkins, P.; de Paula, J. Atkins’ Physical Chemistry, 8th ed. W. H. Freeman: New York, 2006.



An Excited State of Carbon

� Ground state is [He]2s22p2

� Has further descriptors since it is not closed-shell (we will disregard these here)

� Consider the excited state [He]2s22p13s1

� It is instructive to work through the associated term symbols and relative energies

2p

12 possible electron configurations

x y z x y z x y z x y z x y z x y z

3s

2p
x y z x y z x y z x y z x y z x y z

3s

2p
x y z x y z x y z x y z x y z x y z

3s

This strategy indicates there are 12 states but each ‘cartoon’ 
descriptor is not a complete state with a unique energy
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Quantum Numbers

� Consider the excited state [He]2s22p13s1

� Need the quantum numbers of each valence electron

� A quick review of quantum numbers

n – principal quantum number (energy level)

n = 1, 2, 3, 4, …

l – orbital quantum number (orbital shape, angular momentum of orbital motion)

l = 1, 2, 3, … , n – 1 (s, p, d, …)

+

e –

→
l

→
r

→
v

= me
→
r ×

→
v

orbital motion

l is quantized such that its magnitude is given by

|| l ||2 = L2 = h2l (l + 1)

Lz = mlh

ml – orbital magnetic quantum number (projection of l onto the z-axis)

ml = –l, –l + 1, … , l – 1, l

Lz is quantized such that

for a given l, indicates the subshell, e.g., px vs. py vs. pz for l = 1 x

y

zL = 1
p orbitals

ml = –1
(py)

ml = 0
(pz)

ml = +1
(px)
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Quantum Numbers

� Consider the excited state [He]2s22p13s1

� Need the quantum numbers of each valence electron

� A quick review of quantum numbers

n – principal quantum number (energy level)

n = 1, 2, 3, 4, …

s – spin quantum number (a constant, angular momentum of spin motion)

s = 1/2

+

e –

→
l

→
r

→
v

= me
→
r ×

→
v

orbital motion

spin
motion

→
s

s is quantized such that its magnitude is given by

|| s ||2 = S 2 = h2s (s + 1) = 3/4h2

Sz = msh = ±1/2h

ms – spin magnetic quantum number (projection of s onto the z-axis)

ms = ±1/2

Sz is quantized such that

indicates spin ‘up’ or ‘down’
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Addition of Angular Momentum

� Term symbols for [He]2s22p13s1

� The energies of the various substates will depend on l and s of the valence electrons

LS Coupling Hierarchy

� These angular momenta can be straightforwardly added in two limiting cases

� Best applied to lighter elements

� Coupling between electrons of l and of s is most important

� These quantities are added to give possible values of L and S for the atom

L = | l1 – l2 |, | l1 – l2 | + 1, … l1 + l2 – 1, l1 + l2
→
l →

l
→
lS = s1 + s2 S = s1 – s2, s1 + s2 = 1, 0

� Interaction between L and S is relatively small and treated as a perturbation (see later)

� Possible states are assigned a term symbol 2S+1L (as long as Pauli principle not violated)
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Addition of Angular Momentum

� Term symbols for [He]2s22p13s1

� The energies of the various substates will depend on l and s of the valence electrons

LS Coupling Hierarchy

� These angular momenta can be straightforwardly added in two limiting cases

� Two valence electrons to consider:

� The possible values of L and S are thus

L = | l1 – l2 |, | l1 – l2 | + 1, … l1 + l2 – 1, l1 + l2 = 1

S = s1 – s2, s1 + s2 = 1, 0

� The term symbols associated with this excited state of carbon are thus

[He]2s22p13s1 l1 = 1 [He]2s22p13s1 l2 = 0

and3P 1P



Excited State Energies of Carbon

� Energies for [He]2s22p13s1

� According to Hund’s rules, triplets are lower in energy than singlets, so we expect that

1P

3P

en
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gy

62 000 cm–1

60 300 cm–1

0

but with better
resolution…

1P

3P

en
er

gy

61 982 cm–1

60 353 cm–1

0

60 333 cm–1

60 393 cm–1

What is the origin of this fine structure?

GS GS
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Spin-Orbit Coupling

� There are magnetic moments ! associated with the angular momenta of an electron

� The energy of this interaction is proportional to the scalar product of the angular momenta

ESOC = k s • l

+

e –

→
l

→
r

→
v

= me
→
r ×

→
v

orbital motion

spin
motion

→
s

→"s

→"l

The interaction of these magnetic moments
gives rise to spin-orbit coupling

which can further be manipulated to obtain the result

ESOC = a [ j ( j + 1) –  l ( l + 1) – s ( s + 1) ]

� An expression for a is not important but it is critical to note that a ∝ Z 4
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Addition of Angular Momentum

� Term symbols for [He]2s22p13s1

� The energies of the various substates will depend on l and s of the valence electrons

LS Coupling Hierarchy

� These angular momenta can be straightforwardly added in two limiting cases

� Best applied to lighter elements

� Coupling between electrons of l and of s is most important

� These quantities are added to give possible values of L and S for the atom

L = | l1 – l2 |, | l1 – l2 | + 1, … l1 + l2 – 1, l1 + l2
→
l →

l
→
lS = s1 + s2 S = s1 – s2, s1 + s2 = 1, 0

� Interaction between L and S is accounted for using the total angular momentum, J

� Possible states are assigned a term symbol 2S+1LJ (as long as Pauli principle not violated)

→
l

→
l

→
lJ = L + S J = | L – S |, | L – S | + 1, … L + S – 1, L + S
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Addition of Angular Momentum

� Term symbols for [He]2s22p13s1

� The energies of the various substates will depend on l and s of the valence electrons

LS Coupling Hierarchy

� These angular momenta can be straightforwardly added in two limiting cases

� Two valence electrons to consider:

� The possible values of L and S are thus

L = | l1 – l2 |, | l1 – l2 | + 1, … l1 + l2 – 1, l1 + l2 = 1

S = s1 – s2, s1 + s2 = 1, 0

� The possible values of J are

[He]2s22p13s1 l1 = 1 [He]2s22p13s1 l2 = 0

� The term symbols associated with this excited state of carbon are thus

and3P0
1P1

J = | L – S |, | L – S | + 1, … L + S – 1, L + S = 2, 1, 0     (for S = 1)     |     J = 1 for S = 0

3P1
3P2



Fine Structure of Excited State Carbon

� Energies for [He]2s22p13s1

� Spin-orbit coupling explains the fine structure of the 3P level

1P1

3P1

en
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gy

61 982 cm–1

60 353 cm–1

0

60 333 cm–1

60 393 cm–1

For the [He]2s22p13s1 excited state of carbon, the
spin-orbit proportionality constant is a = 20 cm–1GS

3P2

3P0

ESOC = a [ J ( J + 1) –  L ( L + 1) – S ( S + 1) ]

Evaluation of the expression for SOC energy

for the 3P terms (L = 1, S = 1, J = 2, 1, 0) leads to

ESOC = +a       (J = 2)
ESOC = –a       (J = 1)
ESOC = –2a     (J = 0)

applying an external 
magnetic field reveals all 12 
states (Zeeman effect) by 

lifting the 2J+1 degeneracy
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An Excited State of Lead

� Term symbols for [Xe]4f145d106s26p17s1

� The energies of the various substates will depend on l and s of the valence electrons

LS Coupling Hierarchy

� These angular momenta can be straightforwardly added in two limiting cases

� Best applied to lighter elements – not valid for Pb

� Coupling between electrons of l and of s is most important

� These quantities are added to give possible values of L and S for the atom

L = | l1 – l2 |, | l1 – l2 | + 1, … l1 + l2 – 1, l1 + l2
→
l →

l
→
lS = s1 + s2 S = s1 – s2, s1 + s2 = 1, 0

� Interaction between L and S is accounted for using the total angular momentum, J

� Possible states are assigned a term symbol 2S+1LJ (as long as Pauli principle not violated)

→
l

→
l

→
lJ = L + S J = | L – S |, | L – S | + 1, … L + S – 1, L + S
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An Excited State of Lead

� Term symbols for [Xe]4f145d106s26p17s1

� The energies of the various substates will depend on l and s of the valence electrons

jj Coupling Hierarchy

� These angular momenta can be straightforwardly added in two limiting cases

� Best applied to heavier elements – valid for Pb

� Coupling between l and s of each individual electron most important

� These quantities combined first for each electron to find its total angular momentum j

j1 = | l1 – s1 |, l1 + s1 = | l1 ± 1/2 |

j2 = | l2 – s2 |, l2 + s2 = | l2 ± 1/2 |

� Interactions between electrons are less important, accounted for by adding individual j

� Possible states are assigned a term symbol (j1, j2)J

→
l →

l
→
lJ = j1 + j2 J = | j1 – j2 |, | j1 – j2 | + 1, … j1 + j2 – 1, j1 + j2

→
l →

l
→
lj2 = l2 + s2
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An Excited State of Lead

� Term symbols for [Xe]4f145d106s26p17s1

� The energies of the various substates will depend on l and s of the valence electrons

jj Coupling Hierarchy

� These angular momenta can be straightforwardly added in two limiting cases

� Two valence electrons to consider:

� Evaluating the expression for J, possible values are then

[Xe]4f145d106s26p17s1 l1 = 1, s1 = 1/2 ⇒ j1 = 3/2, 1/2

[Xe]4f145d106s26p17s1 l2 = 0, s2 = 1/2 ⇒ j2 = 1/2

J = 2, 1     (for j1 = 3/2, j2 = 1/2)

J = 1, 0     (for j1 = 1/2, j2 = 1/2)

� The term symbols for this excited state of Pb are therefore

(3/2, 1/2)2 (3/2, 1/2)1 (1/2, 1/2)1 (1/2, 1/2)0



[Xe]4f145d106s26p17s1

(3/2, 1/2)1

en
er
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49 440 cm–1

0GS

Pb*

(3/2, 1/2)2 48 189 cm–1

(1/2, 1/2)1
(1/2, 1/2)0

35 287 cm–1

34 960 cm–1

6p spin aligned with vs. against field 
induced by its orbital motion (SOC)

Excited States of Carbon and Lead

[He]2s22p13s1

1P1

3P1

en
er

gy

61 982 cm–1

60 353 cm–1

0

60 333 cm–1

60 393 cm–1

GS

3P2

3P0

C*

singlet vs. triplet

SOC is a perturbation



Excited States of Carbon and Lead

[Xe]4f145d106s26p17s1

(3/2, 1/2)1

en
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gy

49 440 cm–1

0GS

Pb*

(3/2, 1/2)2 48 189 cm–1

(1/2, 1/2)1
(1/2, 1/2)0

35 287 cm–1

34 960 cm–1

6p spin aligned with vs. against field 
induced by its orbital motion (SOC)
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orbital motion

spin
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+
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orbital motion
spin
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s
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‘In alignment’

‘Out of alignment’



[Xe]4f145d106s26p17s1

(3/2, 1/2)1
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49 440 cm–1

0GS

Pb*

(3/2, 1/2)2 48 189 cm–1

(1/2, 1/2)1
(1/2, 1/2)0

35 287 cm–1

34 960 cm–1

SOC dominates –
Interactions between electrons weak

1. Find possible j for each electron, gives 
first-order structure – (3/2, 1/2) & (1/2, 1/2)

2. Find J for the whole atom from each e–, 
predicts fine structure

6p spin aligned with vs. against field 
induced by its orbital motion (SOC)

Excited States of Carbon and Lead

[He]2s22p13s1

1P1

3P1

en
er

gy

61 982 cm–1

60 353 cm–1

0

60 333 cm–1

60 393 cm–1

GS

3P2

3P0

C*

Interactions between electrons dominate
– SOC weak

1. Find L and S for whole atom, predicts 
first-order structure – 1P and 3P terms

2. Find whole-atom SOC from L and S, 
predicts fine structure – 3P2, 3P1, 3P0

singlet vs. triplet

SOC is a perturbation



[Xe]4f145d106s26p17s1

(3/2, 1/2)1
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49 440 cm–1

0GS

Pb*

(3/2, 1/2)2 48 189 cm–1

(1/2, 1/2)1
(1/2, 1/2)0

35 287 cm–1

34 960 cm–1

6p spin aligned with vs. against field 
induced by its orbital motion (SOC)

Excited States of Carbon and Lead

[He]2s22p13s1

1P1

3P1

en
er

gy

61 982 cm–1

60 353 cm–1

0

60 333 cm–1

60 393 cm–1

GS

3P2

3P0

C*

Interactions between electrons dominate
– SOC weak

1. Find L and S for whole atom, predicts 
first-order structure – 1P and 3P terms

2. Find whole-atom SOC from L and S, 
predicts fine structure – 3P2, 3P1, 3P0

singlet vs. triplet

SOC is a perturbation

Combining li to find L and si to find S 
accounts for l-l and s-s interactions 

between electrons first

l-s interactions (SOC) are weak and only 
assessed for the whole atom



Excited States of Carbon and Lead

[He]2s22p13s1

1P1

3P1

en
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61 982 cm–1

60 353 cm–1

0

60 333 cm–1

60 393 cm–1

GS

3P2

3P0

C*

singlet vs. triplet

SOC is a perturbation

[Xe]4f145d106s26p17s1

(3/2, 1/2)1

en
er

gy

49 440 cm–1

0GS

Pb*

(3/2, 1/2)2 48 189 cm–1

(1/2, 1/2)1
(1/2, 1/2)0

35 287 cm–1

34 960 cm–1

SOC dominates –
Interactions between electrons weak

1. Find possible j for each electron, gives 
first-order structure – (3/2, 1/2) & (1/2, 1/2)

2. Find J for the whole atom from each e–, 
predicts fine structure

6p spin aligned with vs. against field 
induced by its orbital motion (SOC)

l-s interactions (SOC) are strong and 
assessed first by combining them in

ji = li + si for each electron

interactions between electrons are weak 
and only assessed by combining their 

TOTAL angular momenta



‘First’ Excited States of Group 14 Elements

(3/2, 1/2)1

Pb*

(3/2, 1/2)2

(1/2, 1/2)1
(1/2, 1/2)0

1P1

3P1

en
er

gy

3P2

3P0

spin-spin
~ 5 kcal/mol

Sn*Ge*Si*C*

‘Exponential’ increase in SOC 
down the periodic table

spin-orbit coupling
~ 40 kcal/mol

To scale, E = 0 is the lowest-energy np1(n+1)1 excited state for each element

ISC (e.g., S → T)

� Symmetry-forbidden, but…

� SOC ‘mixes’ S and T states
the spin of each e– is 
coupled to its orbital motion 
– simple addition of e– 
spins loses meaning

� Conversion between states
     with S & T character
     becomes (weakly) allowed

S ‘character’

T ‘character’

Adapted from physics.nist.gov
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A Physical Model for Intersystem Crossing

R

R

R

R

R

R

R

R

ISC

sz,2 = +1/2h–hsz,1 = –1/2h –hsz,2 = +1/2hsz,1 = +1/2h

� Spin flip involves a change in the z-component of spin angular momentum

� Angular momentum must be conserved in every axis – no ISC ‘in isolation’ … but

Change in spin angular momentum can be offset by a change in orbital angular momentum

pz,1 pz,2 pz,1 pz,2

general singlet diradical corresponding triplet

� A change resulting in ISC must adhere to conservation laws

z

Turro, N. J.; Ramamurthy, V.; Scaiano, S. C. Modern Molecular Photochemistry of Organic Molecules, University Science Books, 2010.
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A Physical Model for Intersystem Crossing

initial singlet state final triplet state

z

–-∆ sz = +1h
spinsz = –1/2h –-sz = +1/2h

sz = 0 sz = 0

lz = 0
–-∆ lz = –1h

orbital
–-lz = +2h lz = 0

–-lz = +1h

Angular momentum balance sheet

R

R

R

R

R

R
operator

on p-e–

pz (ml = 0)

px
(ml = +1)

pz (ml = 0)90º

‘spin down’ ‘spin up’

+

spin
flip

px
(ml = +1)

No change in total angular momentum

� A change resulting in ISC must adhere to conservation laws
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l̂

A Physical Model for Intersystem Crossing

initial singlet state final triplet state

z R

R

R

R

R

R

pz (ml = 0)

px
(ml = +1)

pz (ml = 0)

‘spin down’ ‘spin up’

px
(ml = +1)

This is the spin-orbit operator HSO

� HSO enables ISC via the torque of electrons’ spin and orbital magnetic moments on each other

� Involves exchanging the orbital of the electron undergoing the spin flip with another orbital

� A few molecular features lead to faster ISC

� Necessarily changes the (sub)-orbital of the electron undergoing the spin flip

operator

on p-e–

90º

+

spin
flip

� A change resulting in ISC must adhere to conservation laws
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A Physical Model for Intersystem Crossing

� HSO enables ISC via the torque of electrons’ spin and orbital magnetic moments on each other

� Involves exchanging the orbital of the electron undergoing the spin flip with another orbital

� A few molecular features lead to faster ISC

� Necessarily changes the (sub)-orbital of the electron undergoing the spin flip

< !init | HSO | !final >

Probability of ISC increases as the term

becomes large for any possible Hso

| Einit – Efinal |

DOES NOT NEED TO BE A 90º ROTATION
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A Physical Model for Intersystem Crossing

� HSO enables ISC via the torque of electrons’ spin and orbital magnetic moments on each other

� Involves exchanging the orbital of the electron undergoing the spin flip with another orbital

� A few molecular features lead to faster ISC

� Necessarily changes the (sub)-orbital of the electron undergoing the spin flip

Factors that promote faster ISC via HSO

� Initial and final states should look as similar as possible

� Orbitals being exchanged need similar shapes (ignoring orientation)

� Electron velocity should be as high as possible (maximizes !l to torque !s)

� Orbitals being exchanged need similar energies

� MO containing the e– of interest should contain a heavy atom (Z4 term)

� MO can also be highly localized (e– always near a nucleus, even if light)

< "init | HSO | "final >

Probability of ISC increases as the term

becomes large for any possible Hso

| Einit – Efinal |



l̂An Example of ISC via HSO

Ground
state

� MO representations of ground and excited states of acetone

C O

Me

Me

sp2

sp2

! = px(C) + px(O)

C O

Me

Me

C O

Me

Me

x

y

z

� ! MO depicted as constituent p orbitals to clarify symmetry

� Depictions showing electron(s) in either constituent p orbital are equivalent



l̂An Example of ISC via HSO

Ground
state

� MO representations of ground and excited states of acetone

C O

Me

Me

C O

Me

Me

sp2

sp2

! = px(C) + px(O)

C O

Me

Me

C O

Me

Me

x

y

z

!* = px(C) + px(O)

!* = px(C) – px(O)
and

C O

Me

Mepz

py

excited electron in red

1(n,!*)
state

� ! and !* MOs lumped together to simplify symmetry

� Consider electrons in ! and !* MOs independently



l̂An Example of ISC via HSO

Ground
state

� MO representations of ground and excited states of acetone

C O

Me

Me

C O

Me

Me

sp2

sp2

! = px(C) + px(O)

C O

Me

Me

C O

Me

Me

x

y

z

!* = px(C) + px(O)

!* = px(C) – px(O)
and

C O

Me

Mepz

py

C O

Me

Me

C O

Me

Me

C O

Me

Me

excited electron in red

1(n,!*)
state

3(!,!*)
state



l̂An Example of ISC via HSO

1(n,!*)
state

� Illustration of the symmetry considerations needed for ISC:

x

y

z

3(!,!*)
state

3(n,!*)
state

� If acetone is initially excited to a 1(n,!*) state, what triplet state may it relax to?

C O

Me

Me

C O

Me

Me

Exchange these orbitals & 
spin flip using this depiction

� Net transfer of e– between ml levels
� Unpaired e– can undergo spin flip
� Simplifies the picture to 1 atom

C O

Me

Me

C O

Me

Me

C O

Me

Me

Possible without a heavy atom 
since the MO is highly localized

Not directly accessible via ISC

� Requires spin flip without changing
     the orbital angular momentum

C O

Me

Me

or



Energies of Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

Key points on energies

� Ideal hierarchy is depicted

� As a starting point (and for clarity), consider a d6 octahedral complex, e.g., M(py)6
n+

t2g

dπM
dσM

(6e–)

Mn+ (d6)

σL
(12e–)

πL
(6e–)

π*L

6LML6
n+ (Oh)

dπM

t1u π*L

σL

πL

eg dσ*M

∆o
(d-d) MLCT L-L

� MLCT excited with visible/near-UV light
Involvement of heavy M enables SOC, ISC
d-d states may have issues with e– transfer
L-L states do not involve M, have low SOC

� MLCT is not useful if its energy is too low

� L-L states interfere if dπM too low/πL too high

A problem for many Rh, Os catalysts

� Small ∆o leads to low-energy d-d states
A problem for many 3rd-row catalysts

“Photochemistry and Photophysics of Coordination Compounds II.” Balzani, V.; Campagna, S.; eds.Top. Curr. Chem. 2007, 281.

� Low-E L-L or d-d states deactivate MLCT
     states and have too little energy to be useful
     themselves



Energies of Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

Key points on energies

� Ideal hierarchy is depicted

� As a starting point (and for clarity), consider a d6 octahedral complex, e.g., M(py)6
n+

t2g

dπM
dσM

(6e–)

Mn+ (d6)

σL
(12e–)

πL
(6e–)

π*L

6LML6
n+ (Oh)

dπM

t1u π*L

σL

πL

eg dσ*M

∆o
(d-d) MLCT L-L

� MLCT excited with visible/near-UV light
Involvement of heavy M enables SOC, ISC
d-d states may have issues with e– transfer
L-L states do not involve M, have low SOC

� MLCT is not useful if its energy is too low

� L-L states interfere if dπM too low/πL too high

A problem for many Rh, Os catalysts

� Small ∆o leads to low-energy d-d states
A problem for many 3rd-row catalysts

“Photochemistry and Photophysics of Coordination Compounds II.” Balzani, V.; Campagna, S.; eds.Top. Curr. Chem. 2007, 281.

� Low-E L-L or d-d states deactivate MLCT
     states and have too little energy to be useful
     themselvesIr catalysts generally have this ordering

(as do other classes of photocatalysts)



Energies of Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Real 6-coordinate complexes have lower symmetry, but Oh is a reasonable approximation

ML6
n+ (Oh) Ru(bpy)3

2+ (D3) Ir(ppy)3 (C3)

N
Ir

N

N

N

N
Ru

N
N

N
N

N

N
M

N
N

N
N

2+n+



Energies of Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Real 6-coordinate complexes have lower symmetry, but Oh is a reasonable approximation

t2g

ML6
n+ (Oh)

dπM

t1u π*L

eg dσ*M

Ru(bpy)3
2+ (D3)

π*L

e

Descent in symmetry can be treated as a perturbation

π*L

dσ*M

dπM

e
a2

a1
e

Ir(ppy)3 (C3)

π*L

e

π*L

dσ*M

dπM

e
a

a
e

pseudo-octahedral complexes



Intersystem Crossing in Octahedral Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Following MLCT, consider the SOC interaction needed to facilitate ISC from S1 to T1

t2g

ML6
n+ (Oh)

dπM

t1u π*L

eg dσ*M

MLCT



Intersystem Crossing in Octahedral Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Following MLCT, consider the SOC interaction needed to facilitate ISC from S1 to T1

t2g

ML6
n+ (Oh)

dπM

t1u π*L

eg dσ*M

MLCT

t2g dπM

t1u π*L

eg dσ*M

–

This is a better representation of S1

� The corresponding sum is a substate of T1,
     along with the ‘two up’ and ‘two down’ states
� We will neglect this detail for clarity



Intersystem Crossing in Octahedral Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Following MLCT, consider the SOC interaction needed to facilitate ISC from S1 to T1

t2g

ML6
n+ (Oh)

dπM

t1u π*L

eg dσ*M

t2g dπM

t1u π*L

eg dσ*M

S1 T1

ML6
n+ (Oh)

t2g dπM

t1u π*L

eg dσ*M

T1

ML6
n+ (Oh)

or

ISC

What is the mechanism of the spin flip?



Intersystem Crossing in Octahedral Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Following MLCT, consider the SOC interaction needed to facilitate ISC from S1 to T1
� Need a spin flip AND a change in orbital angular momentum by net e– transfer between orbitals
� The orbitals should be metal-centered, have similar shapes and energies, but different mL values

N

N

N
N

N
N

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

S1

+1 0 –1
mL values:



Intersystem Crossing in Octahedral Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Following MLCT, consider the SOC interaction needed to facilitate ISC from S1 to T1
� Need a spin flip AND a change in orbital angular momentum by net e– transfer between orbitals
� The orbitals should be metal-centered, have similar shapes and energies, but different mL values

N

N

N
N

N
N

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

S1

HSO

+1 0 –1
mL values:

N

N

N
N

N
N

l̂



Intersystem Crossing in Octahedral Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Following MLCT, consider the SOC interaction needed to facilitate ISC from S1 to T1
� Need a spin flip AND a change in orbital angular momentum by net e– transfer between orbitals
� The orbitals should be metal-centered, have similar shapes and energies, but different mL values

N

N

N
N

N
N

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

S1

HSO

+1 0 –1
mL values:

N

N

N
N

N
N

l̂

Disclaimer for the rest of this presentation:
in molecules, metal-centered MOs are not individual dxy, dxz, 

and dyz orbitals but appropriate linear combinations of these (in 
addition to ligand contributions) with mL values that increment 

by 1, but we are simplifying these MOs to pure d orbitals for 
clarity



Intersystem Crossing in Octahedral Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Following MLCT, consider the SOC interaction needed to facilitate ISC from S1 to T1
� Need a spin flip AND a change in orbital angular momentum by net e– transfer between orbitals
� The orbitals should be metal-centered, have similar shapes and energies, but different mL values

N

N

N
N

N
N

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

S1

HSO

+1 0 –1
mL values:

N

N

N
N

N
N

l̂



l̂

Intersystem Crossing in Octahedral Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Following MLCT, consider the SOC interaction needed to facilitate ISC from S1 to T1
� Need a spin flip AND a change in orbital angular momentum by net e– transfer between orbitals
� The orbitals should be metal-centered, have similar shapes and energies, but different mL values

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

T1

HSO

� Spin flip changes spin angular momentum by 1 unit

� Swapping of t2g orbitals differing by 1 level of orbital angular
     momentum (L) and by 1 e– causes an offsetting change in L

� Strong SOC – at metal, orbitals have same shape and energy

+1 0 –1
mL values:

SOC enables ISC in
pseudo-octahedral 

complexes

N

N

N
N

N
N

N

N

N
N

N
N



Intersystem Crossing in Square Planar Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Compare octahedral geometry to square planar

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

S1 T1

ML6
n+ (Oh)

ISC

At metal, orbitals have same shape & energy

strong SOC

eg dπM

b2u π*L

b1g dσ*M

S1 T1

ML4
n+ (D4h)

ISC

Relevant orbitals have a significant energy gap

a1g dπM

b2g dπM

eg dπM

b2u π*L

b1g dσ*M

a1g dπM

b2g dπM

SOC is weaker in square 
planar complexes

weaker SOC



Intersystem Crossing in Square Planar Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Some examples of the HOMO and HOMO–1 energy gaps in photocatalysts

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

S1

ML6
n+ (Oh)

strong SOC

N
Ir

N

N

Degenerate HOMO and 
HOMO–1 in ground state

Ir(ppy)3 (C3)
homoleptic

3 kcal/mol

Ir(dFppy)2(dtbbpy)+

(C2) heteroleptic

10 kcal/mol

N

N
Ir

N

N

t-Bu

t-Bu

F

F

F

F

+

descent in symmetry lifts t2g degeneracy

High Z of Ir maintains 
strong SOC despite E gap

square planar Pt

N

Ph
N

N

Pt

vs.

!PL = 97% !PL = 70% !PL = 14%Inorg. Chem. 2010, 49, 5107.

Eur. J. Inorg. Chem. 2013, 5329.

Inorg. Chem. 2008, 47, 9149.

ChemPhysChem 2011, 12, 2429.

21 kcal/mol



Intersystem Crossing in Square Planar Inorganic Complexes

� Simplified MO diagram and SOC analysis explains much of why Ir complexes are priveleged

� Some examples of the HOMO and HOMO–1 energy gaps in photocatalysts

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

S1

ML6
n+ (Oh)

strong SOC

N

N
Ru

N
N

N
N

Degenerate HOMO and 
HOMO–1 in ground state

Ru(bpy)3
2+ (D3)

homoleptic
Ru(ppy)(bpy)2

+

(C1) heteroleptic

N

N
Ru

N

N
N

+

descent in symmetry lifts t2g degeneracy

Heteroleptic Ru (lower Z 
than Ir) is not emissive

!PL = 10% !PL = 0%

2+

Inorg. Chem. 2009, 48, 9631.

Polyhedron 1990, 9, 1939.

NOTE: luminescence yield 
is a very imperfect metric 

for ISC yield due to 
radiationless deactivation 
pathways (ISC efficiency 

for Ru(bpy)3
2+ is near unity, 

for example), but the 
trends within groups can 
be taken as suggestive



HeterolepticHomoleptic

HOMO

LUMO

N

N
Ir

N

N

F3C

F3C

F

F

F

F3C

F
F3C

+

OMe

OMe
MeO

N
Ir

N

N

Me

Me

Me

OMe

MeO OMe

N

N
Ir

N

N

+

N
Ir

N

N

� ‘Super reductant’ � ‘Super oxidant’

Dramatic modifications do 
not compromise access to 

the triplet excited state

What Makes Ir the Basis for an Effective Photo(redox) Catalyst Class?

� Ir low on the periodic table
SOC ∝ Z4

� Appropriate MO energy ordering

� Orbitals engaged in SOC have
     similar shape and energy –
     pseudo-octagedral geometry

Overcomes descent in
symmetry from Oh to C3

and even C1 (heteroleptic)

|

Does not hold for Ru



The Triplet Excited State of Iridium Photocatalysts

� We now have a model for ISC in pseudo-octahedral complexes (includes all of our Ir photocatalysts)

t2g dπM

t1u π*L

eg dσ*M

dxy dxz dyz

S1 T1

ML6
n+ (Oh)

ISC

Model for ISC in pseudo-octahedral complexes

strong SOC

This is our ‘active’ photocatalyst…
What exactly does it look like?

*

N
Ir

N

N

Ir(ppy)3 (C3)

π*L

e

π*L

dσ*M

dπM

e
a

a
e

� The fine structure and properties of the T1 substates can tell us more about how our photocatalysts work

� A simple model for these substates also suggests why Ir is such a versatile photo(redox) catalytic platform



The Triplet Excited State of Ir(ppy)3

� T1 state studied at low temperature to avoid thermal population of higher-energy vibrational modes

� Some features to note about UV-Vis spectra:

N
Ir

N

N

blue light
absorption

direct excitation
to triplet state

sharpening at
low temperature

even lower
temperature

still broad…

Hofbeck, T.; Yersin, H. Inorg. Chem. 2010, 49, 9290.



N
Ir

N

N

19 863 cm–1

(503.45 nm)

still broad…

‘site-selective exitation’

� This experiment resolves the fine structure of T1

� 3 substates are detected (makes sense for a triplet)

� The highest-energy substate (III) is not observed in
     the emission spectrum

� Only 0.1% thermally populated around 35 K,
     at which point resolution is already lost

� Substate I lies at 19 693 cm–1 = 56.3 kcal/mol above S0

II is 19 cm–1 = 0.054 kcal/mol higher

III is 170 cm–1 = 0.49 kcal/mol higher

The Triplet Excited State of Ir(ppy)3

� T1 state studied at low temperature to avoid thermal population of higher-energy vibrational modes

� Even higher resolution obtained by aiming at a single site and irradiating at a resonant wavelength



The Triplet Excited State of Ir(ppy)3

� T1 state studied at low temperature to avoid thermal population of higher-energy vibrational modes

� Even higher resolution obtained by aiming at a single site and irradiating at a resonant wavelength

N
Ir

N

N

19 863 cm–1

(503.45 nm)

emission at
many low

temperatures

Ir(ppy)3 Emission spectrum



The Triplet Excited State of Ir(ppy)3

� T1 state studied at low temperature to avoid thermal population of higher-energy vibrational modes

� Even higher resolution obtained by aiming at a single site and irradiating with the wavelength of substate III

N
Ir

N

N

19 863 cm–1

(503.45 nm)

� Only substate I emits below 3–4 K (substate II is 19 cm–1 higher)

� Substate I is weakly emitting – intensity quickly surpassed by II

� Substate II should be 0.5% of the Boltzmann population at 5.2 K

� Coupling to higher vibrational modes smears out fine structure
     around 25 K

Ir(ppy)3 Emission spectrum



The Triplet Excited State of Ir(ppy)3

� The lifetimes and decay rates of each substate can also be measured

� The 3 substates behave very differently
direct measurement of !I –
nothing else emits at 1.5 K

!II and !III are fit from the observed 
average lifetimes at higher temperatures

Lifetimes vary by over an 
order of magnitude within T1

Ir(ppy)3 Lifetime vs. T Ir(ppy)3 Photoluminescence yield vs. T

enables determination of radiative and 
non-radiative decay rates

substate

kr (s–1)
knr (s–1)

5 700
800

I

58 000
7 000

II

2 900 000
10 000

III

CH2Cl2 PMMA



The Triplet Excited State of Ir(ppy)3

� What can be learned from this information?

� The overall picture of the T1 state is:

This general excited state structure 
holds across many photocatalysts

*

N
Ir

N

N

*Ir(ppy)3

π*L

π*L

dπM

a

a

e
3.2 kcal/mol

56.3 kcal/mol

0.054 kcal/mol
0.43 kcal/mol

T1

!III = 0.33 "s
3 substates

I
II

III

!II = 15.5 "s
!I = 155 "s

(data here in PMMA)

Excited state lifetimes
� Due to the energy gaps, the Boltzmann
     distribution at rt is 40 (I) : 38 (II) : 22 (III)

� 3 substates including a ‘dark’ low-E and ‘bright’ high-E
� Exact lifetimes and energies vary substantially
� ∆E(I,III) is a proxy for strength of SOC & is >>∆E(I,II)

� When one substate (III) has a much shorter
     lifetime, !av ≈ !III ÷ (% population in III)

� The existence of darker substates rescues
     these complexes from having very short T1

� Especially notable when !III is even shorter

� Effectively !av ≈ 5 × !III for Ir(ppy)3

� This feature is an impediment in LED
     design (want emission to be fast)

!av = 1.4 "s at rt



The Triplet Excited State of Ir(ppy)3

� What can be learned from this information?

� The overall picture of the T1 state is:

*

N
Ir

N

N

*Ir(ppy)3

π*L

π*L

dπM

a

a

e

T1

� The high and nearly temperature-invariant !PL is also remarkable
� Core features of Ir polypyridyls (pseudo-Oh and high Z) ensure broadly high SOC and !ISC

� Unlike other metals, almost all such Ir complexes have modest to excellent emission
� Good rt emission is usually the exception and requires very specific ligand types
     (which may also be much more tedious to prepare than a ppy derivative)
� Other factors matter (non-radiative decay), but this feature reflects the consistently
     excellent access to the triplet excited state needed in photocatalysis when using Ir

Photoluminescence



The Triplet Excited State of Pseudo-octahedral Complexes

� The qualitative description of the T1 state of Ir(ppy)3 also describes almost all pseudo-Oh polypyridyls

This general excited state structure 
holds across many photocatalysts

*

N

X
M

X
N

N
X

π*L

π*L

dπM

E(T1)

T1

!III is short – emissive, ‘bright’
3 substates

I
II

III

!II is intermediate
!I is long – non-emissive, ‘dark’

� 3 substates including a ‘dark’ low-E and ‘bright’ high-E
� Exact lifetimes and energies vary substantially

∆(I,II)
∆(I,III) ∆(I,III) >> ∆(I,II)

Metal polypyridyl

Why is this T1 structure so general?

!av vs. ∆(I,III) (SOC strength)

� ∆E(I,III) is a proxy for strength of SOC & is >>∆E(I,II)



The First Excited State of Pseudo-octahedral Complexes

� A very simple semi-empirical model predicts this structure with few a priori assumptions

*

N

X
M

X
N

N
X

ES*

Metal polypyridyl

� This ‘pseudo angular momentum’ model is constructred in the following manner:

� Treat the ES* of such a complex as a ligand-centered electron and a mixed
     metal-ligand hole (MLCT), each with L = 1, in Oh geometry
� Account for the interaction between the spins of the electron & hole
     and the SOC of the hole (due to its metal character)
� Descend to trigonal symmetry (D3 or C3) by adding a perturbation to the
     Hamiltonian that depends on the z-orbital angular momentum
� Add an x,y-orbital angular momentum perturbation (Jahn-Teller distortion)
     to model a localized excitation of a heteroleptic complex (C2 or C1)

X

X

X
X

X
X

delocalized
e–

hole

electron

spin-spin interaction

spin-orbit interaction

+

only

L = 1
N

N

N
X

N
X

localized
e–

Oh C2 or C1

descent in
symmetry

perturbations
depending on

Lz & Lx,y



A Model for the First Excited State of Octahedral Complexes

� First, list the orbitals and quantum numbers available to the electron and hole

� As seen earlier in MO diagrams for Oh, the ground state LUMO (excited state HOMO) is a T1u representation
     of ligand-centered !* orbitals, call them !Lx*, !Ly*, and !Lz*

� As for p orbitals in Oh, the 3 T1u wavefunctions may be given by the linear combination of these orbitals

where Lz denotes the z-component orbital angular momentum of each wavefunction

� NOTE: this model is termed ‘pseudo angular momentum’ because it treats the threefold-degenerate T2g and
     T1u levels in isolation from the rest of the molecule, assigning them an orbital angular momentum of L = 1

� This strategy drastically simplifies the theory and is consistent with
     the familiar atomic orbital analogy of the L = 1 level (p orbitals) that
     are threefold degenerate in Oh

LUMO (Lz = 0) =
!Lx* + !Ly* + !Lz*

Ž3
LUMO (Lz = ±1) =

!Lz* + e±2!i/3!Lx* + e∓2!i/3!Ly*

Ž3

X

X

X
X

X
X

delocalized
e–

hole

electron

spin-spin interaction

spin-orbit interaction

+

only

L = 1

Oh

z

y

x

Powell, B. J. arXiv:1501.06333.

Powell, B. J. Sci. Rep. 2015, 5, 10815.



A Model for the First Excited State of Octahedral Complexes

� First, list the orbitals and quantum numbers available to the electron and hole

� The ground state HOMO (excited state LUMO) is a T2g representation of metal-centered d orbitals
     (dxy, dxz, dyz) and ligand-centered ! orbitals (!Lx, !Ly, and !Lz) which may be expressed as

X

X

X
X

X
X

delocalized
e–

hole

electron

spin-spin interaction

spin-orbit interaction

+

only

L = 1

Oh

z

y

x

cos" + sin"HOMO (Lz = 0) =
dxy + dxz + dyz

Ž3

HOMO (Lz = ±1) =
dxy + e±2!i/3dxz + e∓2!i/3dyz

Ž3

!Lx* + !Ly* + !Lz*

Ž3

cos" +
!Lz* + e±2!i/3!Ly* + e∓2!i/3!Lx*

Ž3
sin"

� The cos" and sin" terms represent the extent of mixing in the HOMO

� Calculations for Ir(ppy)3 suggest that the HOMO is ~ 50% metal- and
     ligand-centered, so we will use " = !/4 for this illustration



� We can now begin building the energetic model for the excited state

l̂
→
l

→
l

→
l

→
l

A Model for the First Excited State of Octahedral Complexes

� As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� Constants J and ! can be adjusted to capture the strength of the spin-spin and spin-orbit interactions

� From empirical data, we can extract these values for compounds we intend to model from the
     expressions J = J" sin2$ (from the ligand) and ! = !d sin2$ (from the metal)
� Again using Ir(ppy)3 as a example, we can use the values J" = 2 eV (for ppy), !d = 0.43 eV (for Ir),
     and $ ≈ "/4 to represent equal metal and ligand contributions to the HOMO to obtain example constants

J ≈ 1 eV          for Ir(ppy)3

! ≈ 0.215 eV   for Ir(ppy)3

X

X

X
X

X
X

delocalized
e–

hole

electron

spin-spin interaction

spin-orbit interaction

+

only

L = 1

Oh

z

y

x



l̂

→
l

→
l

→
l

→
l

→
l

→
l

→
l

→
l

A Model for the First Excited State of Octahedral Complexes

� We can now begin building the energetic model for the excited state

� As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

X

X

X
X

X
X

delocalized
e–

hole

electron

spin-spin interaction

spin-orbit interaction

+

only

L = 1

Oh

z

y

x

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� LLUMO is not part of this model, so we may disregard it (a further simplification)

total angular momentum

� As presented earlier, the total angular momentum is a conserved quantity, and here is expressed as

I = L + S

� The results of this work are obtained by numerical solutions using the
     specified Hamiltonians, but the simplicity of the model is evident from
     the ability to capture nearly the entire solution to the octahedral model
     from a few quantum mechanical identities and relationships

I = | L – S |, | L – S | + 1, … L + S – 1, L + S
I is therefore a quantum number with the range
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A Model for the First Excited State of Octahedral Complexes

� We can now begin building the energetic model for the excited state

� As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� The following identities and relations help simplify this Hamiltonian:

(SHOMO + SLUMO)2 =  1          (for any triplet)
→
l

→
l(SHOMO + SLUMO)2 =  0          (for any singlet)

(SHOMO + SLUMO)2 =  SHOMO
2 + SLUMO

2 ± 2 SHOMO • SLUMO          (for triplets and singlets, respectively)

simple addition of two spins

expansion of the above ‘quadratic’ expression

→
l

→
lSHOMO

2
 = SLUMO

2 =  3/4          (for any single spin)

the quantized magnitude of spin angular momentum

substitution of the identities into the expanded expression then gives

1 = 3/4 + 3/4 + 2 SHOMO • SLUMO   ⇒       SHOMO • SLUMO = –1/4          (for triplets)
→
l

→
l

→
l

→
l0 = 3/4 + 3/4 – 2 SHOMO • SLUMO   ⇒       SHOMO • SLUMO = +3/4          (for singlets)

These values are the first part of the expression for H (Oh)
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A Model for the First Excited State of Octahedral Complexes

� We can now begin building the energetic model for the excited state

� As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� The following identities and relations help simplify this Hamiltonian:

I 2 = (LHOMO + SHOMO + SLUMO)2 =  LHOMO
2

 + 2 LHOMO • SHOMO + 2 LHOMO • SLUMO + (SHOMO + SLUMO)2

(SHOMO + SLUMO)2 =  1, 0          (for triplets and singlets, respectively)

partial expansion of the total angular momentum of the system (recall that we can neglect LLUMO)

and substituting in the following values

leads to the simplified relationship

I(I + 1) = 2 + 2 LHOMO • SHOMO + 1 ⇒ LHOMO • SHOMO = 3 – I(I + 1)          (for triplets)

I(I + 1) = 2 + 2 LHOMO • SHOMO + 0 ⇒ LHOMO • SHOMO = 2 – I(I + 1)          (for singlets)

LHOMO
2 = LHOMO(LHOMO + 1) = 1(1 + 1) = 2          (as above and since LHOMO = 1 for this model)

→
lLHOMO • SLUMO =  0          (since the LUMO is metal-free and thus does not involve a strong SOC term)

→
lI 2 = I(I + 1)          (the expression for the magnitude of any quantum number)

2

2
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A Model for the First Excited State of Octahedral Complexes

� We can now begin building the energetic model for the excited state

� As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� Lastly, using the range of possible values for total angular momentum I

leads to the simplified relationship

I = | L – S |, | L – S | + 1, … L + S – 1, L + S
⇒ I = 0, 1, 2     (for triplets, as L = 1 and S = 1) and     I = 0     (for singlets, as L = 1 and S = 0)

enables substate-dependent solutions for the spin-orbit term

LHOMO • SHOMO = +3/2          (for triplets with I = 0)
→
l

→
lLHOMO • SHOMO = +1/2          (for triplets with I = 1)

→
l

→
lLHOMO • SHOMO = –3/2          (for triplets with I = 2)

→
l

→
lLHOMO • SHOMO = 0               (for singlets, I = 1)

→
l

→
l

→
l

→
l

→
l

→
l

→
l

→
lI(I + 1) = 2 + 2 LHOMO • SHOMO + 1 ⇒ LHOMO • SHOMO = 3 – I(I + 1)          (for triplets)

I(I + 1) = 2 + 2 LHOMO • SHOMO + 0 ⇒ LHOMO • SHOMO = 2 – I(I + 1)          (for singlets)
2

2
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A Model for the First Excited State of Octahedral Complexes

� We can now begin building the energetic model for the excited state

� As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� Lastly, using the range of possible values for total angular momentum I

lastly, recalling that the spin-spin term is evaluated as

I = | L – S |, | L – S | + 1, … L + S – 1, L + S
⇒ I = 0, 1, 2     (for triplets, as L = 1 and S = 1) and     I = 0     (for singlets, as L = 1 and S = 0)

enables substate-dependent solutions for the spin-orbit term

LHOMO • SHOMO = +3/2          (for triplets with I = 0)
→
l

→
lLHOMO • SHOMO = +1/2          (for triplets with I = 1)

→
l

→
lLHOMO • SHOMO = –3/2          (for triplets with I = 2)

→
l

→
lLHOMO • SHOMO = 0               (for singlets, I = 1)

→
l

→
l     SHOMO • SLUMO = –1/4           (for triplets)

→
l

→
l     SHOMO • SLUMO = +3/4           (for singlets)

and since the Hamiltonian operator corresponds
to the energies of the wavefunctions " that are
solutions to the Schrödinger equation

l̂H " = E "
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A Model for the First Excited State of Octahedral Complexes

� We can now begin building the energetic model for the excited state

� As suggested in the diagram below, the Hamiltonian will be very simple, capturing only 2 interactions

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� Application of the previous relationships then lead to the following expressions for the energy levels

E / J = –3/2 ! / J – 1/4          (for triplets with I = 0)

E / J = +1/2 ! / J – 1/4          (for triplets with I = 1)

E / J = +3/2 ! / J – 1/4          (for triplets with I = 2)

E / J = +3/4               (for singlets, I = 1)
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A Model for the First Excited State of Octahedral Complexes

� The pseudo orbital angular momentum model for the excited state energies of octahedral complexes is thus

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� Results of this study are presented as plots of E as the constant terms in its expressions are varied

E / J = –3/2 ! / J – 1/4          (for triplets with I = 0)

E / J = +1/2 ! / J – 1/4          (for triplets with I = 1)

E / J = +3/2 ! / J – 1/4          (for triplets with I = 2)E / J = +3/4               (for singlets, I = 1)

� Since this model makes only relative predictions for E, results are scaled by spin-spin term J

stronger SOC

spltting between triplet substates
increases with stronger SOC

SOC mixes singlet and triplet I = 1 states
(total angular momentum is conserved) –

note the deviation from linearity
(this is captured in full numerical 
solutions and not in the simplified 

linear relations above)
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A Model for the First Excited State of Octahedral Complexes

� The pseudo orbital angular momentum model for the excited state energies of octahedral complexes is thus

H (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

� Results of this study are presented as plots of E as the constant terms in its expressions are varied

E / J = –3/2 ! / J – 1/4          (for triplets with I = 0)

E / J = +1/2 ! / J – 1/4          (for triplets with I = 1)

E / J = +3/2 ! / J – 1/4          (for triplets with I = 2)E / J = +3/4               (for singlets, I = 1)

� Since this model makes only relative predictions for E, results are scaled by spin-spin term J

stronger SOC

spltting between triplet substates
increases with stronger SOC

SOC mixes singlet and triplet I = 1 states
(total angular momentum is conserved) –

note the deviation from linearity
(this is captured in full numerical 
solutions and not in the simplified 

linear relations above)

� Recall for Ir(ppy)3 that J ≈ 1 eV
     and ! ≈ 0.2 eV, so J / ! ≈ 0.2
     (though we are in still in Oh…)

‘Ir(ppy)3’

Not a realistic
model yet
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A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� The next step in this model is to descend in symmetry to D3 (or C3) by adding a perturbation term to Oh

H (trig) = H (Oh) + perturbation = J SHOMO • SLUMO + ! LHOMO • SHOMO + perturbation

� As seen earlier, this is a reasonable assumption for relevant pseudo-octahedral complexes
     since the splitting among dπM orbitals is much less than the T1–S0 gap

N
Ir

N

N

N

N
Ru

N
N

N
N

ML6
n+ (Oh) Ru(bpy)3

2+ (D3) Ir(ppy)3 (C3)

N

N
M

N
N

N
N

2+n+
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A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� The next step in this model is to descend in symmetry to D3 (or C3) by adding a perturbation term to Oh

� What should this perturbation term be, however? What will its effect be?

� As seen earlier, this is a reasonable assumption for relevant pseudo-octahedral complexes
     since the splitting among dπM orbitals is much less than the T1–S0 gap

� Chosen since the 3-component HOMO and LUMO of the excited state are descending to these symmetries

� The Hückel model for the energy of such a system is

H ! = E ! with l̂H ! =
"
#
#

#
"
#

#
#
"

" = energy of each component
# = exchange energy between components

we want to find E and !, which will be some linear combination of the orbitals of the 3 components

! =
c1 $1
c2 $2
c3 $3

$1, $2, $3 = the orbitals of each component of the system

finding the solution to this system thus amounts to solving

"–E
#
#

#
"–E

#

#
#

"–E
l̂(H – E) ! = 0

c1 $1
c2 $2
c3 $3

"–E
#
#

#
"–E

#

#
#

"–E

c1
c2
c3

$1, $2, $3= = 0⇒

� Consider a general 3-component system with trigonal (D3, C3, etc.) symmetry

l̂l̂
→
l

→
l

→
l

→
lH (trig) = H (Oh) + perturbation = J SHOMO • SLUMO + ' LHOMO • SHOMO + perturbation



A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� Since the orbitals of the 3 components are non-zero, we must solve the system of equations

we can arrive at reduced row echelon form by the sequence

0
0
0

c1(!–E)/"
c1
c1

c2
c2(!–E)/"

c2

c3
c3

c3(!–E)/"
= or

0
0
0

c1x
c1
c1

c2
c2x
c2

c3
c3
c3x

= using x = (!–E)/"

c1x
c1
c1

c2
c2x
c2

c3
c3
c3x

row 2 × x
row 3 × x

c1x
c1x
c1x

c2
c2x2

c2x

c3
c3x
c3x2

(2) – (1)
(3) – (1)

c1x
0
0

c2
c2x2–c2
c2x–c2

c3
c3x–c3
c3x2–c3

c1x
0
0

c2
c2(x–1)(x+1)

c2(x–1)

c3
c3(x–1)

c3(x–1)(x+1)(3) × (x+1)

c1x
0
0

c2
c2(x–1)(x+1)
c2(x–1)(x+1)

c3
c3(x–1)

c3(x–1)(x+1)2(3) – (2)

c1x
0
0

c2
c2(x–1)(x+1)

0

c3
c3(x–1)

c3[(x–1)(x+1)2–(x–1)]

c1x2(x–1)(x+2)
0
0

c2x(x–1)(x+2)
c2x(x–1)(x+1)(x+2)

0

c3x(x–1)(x+2)
c3x(x–1)(x+2)
c3x(x–1)(x+2)

(1) × x(x–1)(x+2)
(2) × x(x+2)
simplify (3)

c1x2(x–1)(x+2)
0
0

c2x(x–1)(x+2)
c2x(x–1)(x+1)(x+2)

0

0
0

c3x(x–1)(x+2)

c1x2(x–1)(x+1)(x+2)
0
0

0
c2x(x–1)(x+1)(x+2)

0

0
0

c3x(x–1)(x+2)

(1) – (3) (2) – (3)

(1) × (x+1) – (2)



A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� With the system simplified to

0
0
0

= and x = (!–E)/"

c1x
c1
c1

c2
c2x
c2

c3
c3
c3x

c1x2(x–1)(x+1)(x+2)
0
0

0
c2x(x–1)(x+1)(x+2)

0

0
0

c3x(x–1)(x+2)

both quickly lead to rref
0
0
0

=
c1
0
0

0
c2
0

0
0
c3

0
0
0

= (a meaningless solution)

–2c1
c1
c1

c2
–2c2

c2

c3
c3

–2c3

0
0
0

= and rref
c1
0
0

–c2
c2
0

0
–c3
0

0
0
0

= c1 = c2 = c3
(we are free to choose the value)

c1
c1
c1

c2
c2
c2

c3
c3
c3

0
0
0

= and rref
c1
0
0

c2
0
0

c3
0
0

0
0
0

= c1 = – (c2 + c3) (degenerate)
(choose any 2 pairs of c2 and c3)

� We may select any values, and it is tempting to use 1 or other simple real numbers, but if we select

⇒

⇒

for x = –2 (E = ! + 2"), Ž3

and for x = +1 (E = ! – "),

c1 = c2 = c3 = 1/

c2 = e±2#
 
i /3/   3 = –1/(2   3) ± 1/2 i

(has 2 solutions)

� We have solutions for x of x = –2, –1, 0, +1, but substitution of x = –1 or x = 0 into

� x = –2 corresponds to E = ! + 2" and substitution into the original matrix leads to

� x = +1 corresponds to E = ! – " and substitution into the original matrix leads to

c3 = e∓2#
 
i /3/   3 = –1/(2   3) ∓ 1/2 iŽ

,    c1 = 1/Ž3 (same c1 in both cases)Ž Ž
Ž



A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� Then the solutions to our 3-component system are

The solutions are constructed in the exact same manner from their constituent orbitals

LUMO (Lz = 0) =
!Lx* + !Ly* + !Lz*

Ž3
LUMO (Lz = ±1) =

!Lz* + e±2!i/3!Ly* + e∓2!i/3!Lx*

Ž3

E1 = " + 2# $1 =
%1 + %2 + %3

Ž3
E2,3 = " – # $2,3 =

%1 + e±2!i/3%2 + e∓2!i/3%3

Ž3

� Critically, if we compare this solution to our model for the HOMO and LUMO of metal polypyridyls…

this is the a general model for any system of 3 equivalent components, symmetrically positioned in a
trigonal point group, that have an exchange interaction

cos& + sin&HOMO (Lz = 0) =
dxy + dxz + dyz

Ž3

HOMO (Lz = ±1) =
dxy + e±2!i/3dxz + e∓2!i/3dyz

Ž3

!Lx* + !Ly* + !Lz*

Ž3

cos& +
!Lz* + e±2!i/3!Ly* + e∓2!i/3!Lx*

Ž3
sin&

This is an appropriate model for the descent in symmetry from Oh to D3 or C3
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A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� Descending from Oh to D3 or C3, the previously 3-fold degenerate HOMO and LUMO are split

H (trig) = J SHOMO • SLUMO + ! LHOMO • SHOMO + ∆(Lz)2

� Comparing the form of the trigonal symmetry model

E1 = " + 2# $1 =
%1 + %2 + %3

Ž3
E2,3 = " – # $2,3 =

%1 + e±2&i/3%2 + e∓2&i/3%3

Ž3

LUMO (Lz = 0) =
&Lx* + &Ly* + &Lz*

Ž3
LUMO (Lz = ±1) =

&Lz* + e±2&i/3&Ly* + e∓2&i/3&Lx*

Ž3

to the wavefunctions used to model the excited state of photocatalysts,

the Lz = ±1 LUMO remains 2-fold degenerate, but separates from the Lz = 0 level by E = 3#

(the result is also true for the HOMO, though # need not have the same value in both cases)

� If we define these splittings as ∆ for the HOMO and ' for the LUMO, but first

� We have generally ignored Lz (LUMO) and will do so here, it adds 2 degenerate solutions higher by '

� Recognize that we need a term that separates the Lz = ±1 levels from the Lz = 0 level

we may write the following model for the excited state of a trigonal pseudo-octahedral complex
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A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� In terms of a molecular orbital level diagram, we get the a result that makes sense:

H (trig) = J SHOMO • SLUMO + ! LHOMO • SHOMO + ∆(Lz)2

t2g
dπM

t1u
π*L

dxy dxz dyz

T1

ML6
n+ (Oh)

*

N
Ir

N

N

ML6
n+ (C3)

π*L

e

a

a

e

ML6
n+ (D3)

π*L

dπM

e

a2

a1

e
T1 T1

� Effect of the perturbation to Oh – ∆(Lz)2

� The perturbation stabilizes the HOMO and destabilizes the LUMO as shown since the e solutions interact
     but the a1 and a2 solutions may not due to symmetry

� The magnitude of the splitting is lower in C3 since the distinct a1 and a2 orbitals inheret the same symmetry (a)

"

dπM

∆

"

∆
∆ ≈ 0.14 eV for Ir(ppy)3



A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

For Ir(ppy)3:
J ≈ 1 eV, ! ≈ 0.22 eV, ∆ ≈ 0.14 eV,

so ! / J ≈ 0.22, ∆ / J ≈ 0.14

‘Ir(ppy)3’

� The descent from Oh to trigonal symmetry lifts many substate degeneracies, leaves 3 low-E triplets

HOMO/HOMO–1 gap

l̂
→
l

→
l

→
l

→
lH (Oh) = J SHOMO • SLUMO + ! LHOMO • SHOMO

Octahedral model

! / J = 0.2

! / J = 0.2 Singlets

I = 2

I = 1

I = 0

Tr
ip

le
ts

Trigonal model

l̂
→
l

→
l

→
l

→
lH (trig) = J SHOMO • SLUMO + ! LHOMO • SHOMO + ∆(Lz)2

stronger SOC
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For Ir(ppy)3:
J ≈ 1 eV, ! ≈ 0.22 eV, ∆ ≈ 0.14 eV,

so ! / J ≈ 0.22, ∆ / J ≈ 0.14

‘Ir(ppy)3’

� The descent from Oh to trigonal symmetry lifts many substate degeneracies, leaves 3 low-E triplets

HOMO/HOMO–1 gap
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Trigonal model
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→
lH (trig) = J SHOMO • SLUMO + ! LHOMO • SHOMO + ∆(Lz)2

stronger SOC



A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� The descent from Oh to trigonal symmetry lifts many substate degeneracies, leaves 3 low-E triplets

HOMO/HOMO–1 gap

! / J = 0.2 Singlets

I = 2

I = 1

I = 0

Tr
ip

le
ts

t2g
dπM

t1u
π*L

dxy dxz dyz

T1

ML6
n+ (Oh) ML6

n+ (D3)

π*L

dπM

e

a2

a1

e
T1

#

∆
Lz = 0

Lz = ±1

Lz = ±1 destabilized under trigonal symmetry

Leaves 3 low-E triplets
(one I = 0 and two I = 1)

Effect of ∆ –
raises E unless Lz = 0

Trigonal model

l̂
→
l

→
l

→
l

→
lH (trig) = J SHOMO • SLUMO + ! LHOMO • SHOMO + ∆(Lz)2



A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� The descent from Oh to trigonal symmetry lifts many substate degeneracies, leaves 3 low-E triplets

HOMO/HOMO–1 gap

! / J = 0.2 Singlets

I = 2

I = 1

I = 0

Tr
ip

le
ts

Lz = 0 (flat)

t2g
dπM

t1u
π*L

dxy dxz dyz

T1

ML6
n+ (Oh) ML6

n+ (D3)

π*L

dπM

e

a2

a1

e
T1

#

∆
Lz = 0

Lz = ±1

Lz = 0 are the lowest-E substates

Leaves 3 low-E triplets
(one I = 0 and two I = 1)

Effect of ∆ –
raises E unless Lz = 0

� More realistic than Oh, but 2 of the 3
     substates of T1 remain degenerate

Trigonal model

l̂
→
l

→
l

→
l

→
lH (trig) = J SHOMO • SLUMO + ! LHOMO • SHOMO + ∆(Lz)2



A Model for the First Excited State of Trigonal, Pseudo-octahedral Complexes

� The descent from Oh to trigonal symmetry lifts many substate degeneracies, leaves 3 low-E triplets

HOMO/HOMO–1 gap

! / J = 0.2 Singlets

I = 2

I = 1

I = 0

Tr
ip

le
ts

Lz = 0 (flat)

t2g
dπM

t1u
π*L

dxy dxz dyz

T1

ML6
n+ (Oh) ML6

n+ (D3)

π*L

dπM

e

a2

a1

e
T1

#

∆
Lz = 0

Lz = ±1

Lz = 0 are the lowest-E substates

these are the lowest blue and black lines
what do these substates look like?

Leaves 3 low-E triplets
(one I = 0 and two I = 1)

Effect of ∆ –
raises E unless Lz = 0

� More realistic than Oh, but 2 of the 3
     substates of T1 remain degenerate
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� The descent from Oh to trigonal symmetry lifts many substate degeneracies, leaves 3 low-E triplets

t2g
dπM

t1u
π*L

dxy dxz dyz

T1

ML6
n+ (Oh) ML6

n+ (D3)

e

a2

a1

T1

Leaves 3 low-E triplets
(one I = 0 and two I = 1)

Effect of ∆ –
raises E unless Lz = 0

ML6
n+ (D3)

T1

ML6
n+ (D3)

T1

+I = 1 I = 1 I = 0

� More realistic than Oh, but 2 of the 3
     substates of T1 remain degenerate

technically quite oversimplified since the MOs are 
much nastier combinations of metal/ligand-centered 

orbitals and spin states, but not an unreasonable way 
to picture the key interactions

e



A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

� The final step is to descend from trigonal symmetry (D3 or C3) to ‘broken’ trigonal symmetry

� This symmetry change may come from treating an excited state as localized or by considering
     a heteroleptic photocatalyst instead of a homoletpic one

N
Ir

N

N

N

N
Ir

N

N

Ir(ppy)2(bpy)+ (C2) localized excited state
of Ir(ppy)3 (C1)

N
Ir

N

N

Ir(ppy)3 (C3)
+

‘broken’ trigonal
symmetry

� This is a perturbation to trigonal symmetry, in analogy to trigonal symmetry as a perturbation of Oh

� We introduce a term ! which alters the energy of states with net orbital angular momentum in x, y

l̂
→
l

→
l

→
l

→
lH (trig′) = J SHOMO • SLUMO + " LHOMO • SHOMO + ∆(Lz)2 + ![(Lx)2 – (Ly)2]
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A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

� The descent from trigonal to borken trigonal symmetry lifts all degeneracies

Lx,y distortion

Trigonal model

! / J = 0.2
∆ / J = 0.5
! / J = 0.2

Singlets

I = 2

I = 1

I = 0

Tr
ip

le
ts

Lz = 0 (flat)

l̂
→
l

→
l

→
l

→
lH (trig) = J SHOMO • SLUMO + ! LHOMO • SHOMO + ∆(Lz)2

� Focus on the T1 substates – the entire picture is very complex and adds little information

∆ / J = 0.5

Broken trigonal model

l̂H (trig′) = H (trig) + #[(Lx)2 – (Ly)2]

� Describes the T1 state as 3 substates
� 1 non-degenerate with I = 0, lowest-E
� 2 degenerate with I = 1, next-to-lowest-E

� Descent from Oh to trigonal leaves these substates
     as low-E due to a lack of z-orbital angular momentum
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� The descent from trigonal to borken trigonal symmetry lifts all degeneracies

Lx,y distortion

Trigonal model

! / J = 0.2
∆ / J = 0.5
! / J = 0.2

Singlets

I = 2

I = 1

I = 0

Tr
ip

le
ts

Lz = 0 (flat)

l̂
→
l

→
l

→
l

→
lH (trig) = J SHOMO • SLUMO + ! LHOMO • SHOMO + ∆(Lz)2

� Focus on the T1 substates – the entire picture is very complex and adds little information

∆ / J = 0.5

Broken trigonal model

l̂H (trig′) = H (trig) + #[(Lx)2 – (Ly)2]

� Describes the T1 state as 3 substates
� 1 non-degenerate with I = 0, lowest-E
� 2 degenerate with I = 1, next-to-lowest-E

� Descent from Oh to trigonal leaves these substates
     as low-E due to a lack of z-orbital angular momentum

� Splits the low-lying I = 1 substate
� Due to their disparate Lx,y values

� Allows assignment of substates I, II, III
� As in real systems, ∆E(II,III) >> ∆E(I,II)
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A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

� A summary of the pseudo angular momentum model

Trigonal model Broken trigonal model

l̂H (trig′) = H (trig) + ![(Lx)2 – (Ly)2]

"III = 0.2 #s

I

II

III

"II = 6.4 #s
"I = 116 #s

19 cm–1

151 cm–1

l̂l̂H (trig) = H (Oh) + ∆(Lz)2
l̂ →

l
→
l

→
l

→
lH (Oh) = J SHOMO • SLUMO 

                  + $ LHOMO • SHOMO

Octahedral model Ir(ppy)3 T1 substates

� Very simple model for T1

� Only considers 3 HOMO
     and 3 LUMO orbitals

� Almost fully solvable
     from simple quantum
     mechanical identities

� Treats descent in
     symmetry as a simple
     perturbation to Oh

� Predicts 3 substates
     of T1 much lower in
     energy than other
     excited states due to
     Lz ≈ 0 (2 degenerate)

� Only considers e–/hole
     spin-spin, and hole
     spin-orbit interactions

� Treats further descent
     in symmetry as an
     additional, analogous
     perturbation

� Predicts a realistic
     splitting of the T1
     substates

triplets

I = 0
I = 1

I = 2

Lz ≈ 0

|Lz| > 0

similar to many
other relevant

photocatalysts –
‘reality’

Lx,y

I
II

III

Excellent
qualitative

approximation



A Model for the First Excited State of Broken Trigonal, Pseudo-octahedral Complexes

� Some key conclusions from the pseudo angular momentum model

� The energetic structure underlying our photocatalysts derive from a few simple general molecular features

� Earlier consideration of intersystem crossing showed that the global structure of excited state energies
     resulting from octahedral or near-octahedral geometry was essential to photocatalyst generality

� Given appropriate ligand/metal energies and strong spin-orbit coupling, this model suggests that the fine
     structure of the excited state energies can also be seen as a consequence of pseudo-octahedral geometry

Appreciable changes to the ligand framework to adjust specific 
properties do not compromise the generally desired reactivity
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+
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