

Eric Welin

MacMillan Group Meeting

May 9, 2012

Greg Fu: Biography

- Born 1963 in Galion, Ohio
- Graduated from MIT, 1985
 - K. Barry Sharpless
- Ph.D. from Harvard, 1991
 - David A. Evans Rh/Ir catalyzed hydroborations
- Postdoctoral Fellow at CalTech, 1993
 - Robert H. Grubbs ring closing metathesis
- Assistant Professor at MIT, 1993-1998

Promoted to Associate Professor in 1998, Professor in 1999, Firmenich Professor of Chemistry in 2007

Altair Professor of Chemistry, CalTech 2012

- NSF Young Investigator Award
- ACS Cope Scholar Award
- Fellow, Royal Society of Chemistry
- Fellow, American Academy of Arts and Sciences
- ACS Award for Creative Work in Synthetic Organic Chemistry

Greg Fu: Significant Research Areas

Publications by Research Area

Greg Fu: Significant Research Areas

Organotin Catalysis: Reductions

■ Regeneration of Sn-H (with PhSiH₃ or PMHS) allows use of catalytic quantities of alkyl tin

Organotin Mediated Reductive Cyclizations

tin ketyl radical cyclization of dialdehydes

Organotin Mediated Reductive Cyclizations

tin ketyl radical cyclization of dialdehydes

Hays, D. S.; Fu, G. C. *J. Org. Chem.* **1996**, *61*, 4 Tormo, J.; Hays, D. S.; Fu, G. C. *J. Org. Chem.* **1998**, *63*, 201

Greg Fu: Significant Research Areas

Synthesis of 1-H-boratabenzene

Hoic, D. A.; Davis, W. M.; Fu, G. C. J. Am. Chem. Soc. 1995, 117, 8480

Qiao, S.; Hoic, D. A.; Fu, G. C. *J. Am. Chem. Soc.* **1996**, *118*, 6329 Hoic, D. A.; Davis, W. M.; Fu, G. C. *J. Am. Chem. Soc.* **1996**, *118*, 8176

The first enantiopure planar-chiral Lewis acid complex

Tweddell, J.; Hoic, D. A.; Fu, G. C. J. Org. Chem. 1997, 62, 8286

Greg Fu: Significant Research Areas

Asymmetric Nucleophilic Catalysis

Kinetic Resolutions
Ketene Additions
Enantioselective Acylations
Phosphine Catalysis

s = _____

rate of slow-reacting enantiomer

Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237

s =

Kagan, H. B.; Fiaud, J. C. *Top. Stereochem.* **1988**, *18*, 249 Ruble, J. C.; Latham, H. A.; Fu, G. C. *J. Am. Chem. Soc.* **1997**, *119*, 1492 Ruble, C. J.; Tweddell, J.; Fu, G. C. *J. Org. Chem.* **1998**, *63*, 2794

Tao, B.; Ruble, J. C.; Hoic, D. A.; Fu, G. C. J. Am. Chem. Soc. 1999, 121, 5091

acylation of racemic benzylic amines

le, Y.; Fu, G. C. *Chem. Commun.* **2000**, 119 Arai, S.; Bellemin-Laponnaz, S.; Fu, G. C. *Angew. Chem., Int. Ed.* **2001**, *40*, 234

acylation of racemic 2-substituted indolines

Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 14264

addition of methanol shows moderate enantioselectivity

Hodous, B. L.; Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1999, 121, 2637

addition of methanol shows moderate enantioselectivity

Hodous, B. L.; Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1999, 121, 2637

■ use of a more acidic alcohol and a more basic catalyst improves ee

Hodous, B. L.; Fu, G. C. *J. Am. Chem. Soc.* **2002**, *124*, 10006 Schaefer, C.; Fu, G. C. *Angew. Chem. Int. Ed.* **2005**, *44*, 4606 Lee, E. C.; McCauley, K. M.; Fu, G. C. *Angew. Chem. Int. Ed.* **2007**, *46*, 977 Dai, X.; Nakai, T.; Romero, J. A. C.; Fu, G. C. *Angew. Chem. Int. Ed.* **2007**, *46*, 4367

■ use of a more acidic alcohol and a more basic catalyst improves ee

■ use of a more acidic alcohol and a more basic catalyst improves ee

Hodous, B. L.; Fu, G. C. *J. Am. Chem. Soc.* **2002**, *124*, 10006 Schaefer, C.; Fu, G. C. *Angew. Chem. Int. Ed.* **2005**, *44*, 4606 Lee, E. C.; McCauley, K. M.; Fu, G. C. *Angew. Chem. Int. Ed.* **2007**, *46*, 977 Dai, X.; Nakai, T.; Romero, J. A. C.; Fu, G. C. *Angew. Chem. Int. Ed.* **2007**, *46*, 4367

Asymmetric Nucleophilic Catalysis

for references on enantioselective ketene [2+2] cycloadditions see:

Hodous, B. L.; Fu, G. C. *J. Am. Chem. Soc.* **2002**, *124*, 1578 Wilson, J. E.; Fu, G. C. *Angew. Chem. Int. Ed.* **2004**, *43*, 6358 Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. *J. Am. Chem. Soc.* **2005**, *127*, 11586 Berlin, J. M.; Fu, G. C. *Angew. Chem. Int. Ed.* **2008**, *47*, 7048 Dochnahl, M.; Fu, G. C. *Angew. Chem. Int. Ed.* **2009**, *48*, 2391

for references on enantioselective acylations see:

Ruble, J. C.; Fu, G. C. *J. Am. Chem. Soc.* **1998**, *120*, 11532 Mermerian, A. H.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 4050 Hills, I. D.; Fu, G. C. *Angew. Chem. Int. Ed.* **2003**, *42*, 3921 Mermerian, A. H.; Fu, G. C. *Angew. Chem. Int. Ed.* **2005**, *44*, 949 Mermerian, A. H.; Fu, G. C. *J. Am. Chem. Soc.* **2005**, *127*, 5604

for references on enantioselective phosphine catalysis

Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234
Wilson, J. E.; Fu, G. C. Angew. Chem. Int. Ed. 2006, 45, 1426
Chung, Y. K.; Fu, G. C. Angew. Chem. 2009, 121, 2259
Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2009, 131, 14231
Wilson, J. E.; Sun, J.; Fu, G. C. Angew. Chem. Int. Ed. 2010, 49, 161
Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 4568
Sinisi, R.; Sun, J.; Fu, G. C. Proc. Nat. Acad. Sci. USA 2010, 107, 20652
Fujiwara, Y.; Fu, G. C. J. Am. Chem. Soc. 2012, 133, 12293

Greg Fu: Significant Research Areas

Bisazaferrocene: BISAF

structurally and electronically similar to bisoxazoline ligands

- has found use in copper carbenoid chemistry:
 - cyclopropanation
 - oxetane insertion
 - OH insertion
- also used in [3+2] cycloaddition between nitrones and alkynes

Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 10270
Lo, M. M.-C.; Fu, G. C. Tetrahedron 2001, 57, 2621
Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572
Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594

Phosphaferrocenes

also similar to bisoxazoline ligands, but somewhat more versatile:

Shintani, R.; Fu, G. C. *Org. Lett.* **2002**, *4*, 3699 Shintani, R.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 10778 Shintani, R.; Lo, M. M.-C.; Fu, G. C. *Org. Lett.* **2000**, *2*, 3695 Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M. C.; Fu, G. C. *J. Am. Chem. Soc.* **2000**, *122*, 9870 Qiao, S.; Fu, G. C. *J. Org. Chem.* **1998**, *63*, 4168

Phosphaferrocenes

also similar to bisoxazoline ligands, but somewhat more versatile:

- conjugate additions
- [3+2] cycloadditions
- Tsuji-Trost additions

Shintani, R.; Fu, G. C. *Org. Lett.* **2002**, *4*, 3699 Shintani, R.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 10778 Shintani, R.; Lo, M. M.-C.; Fu, G. C. *Org. Lett.* **2000**, *2*, 3695 Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M. C.; Fu, G. C. *J. Am. Chem. Soc.* **2000**, *122*, 9870 Qiao, S.; Fu, G. C. *J. Org. Chem.* **1998**, *63*, 4168

Phosphaferrocenes

also similar to bisoxazoline ligands, but somewhat more versatile:

Shintani, R.; Fu, G. C. *Org. Lett.* **2002**, *4*, 3699 Shintani, R.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 10778 Shintani, R.; Lo, M. M.-C.; Fu, G. C. *Org. Lett.* **2000**, *2*, 3695 Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M. C.; Fu, G. C. *J. Am. Chem. Soc.* **2000**, *122*, 9870 Qiao, S.; Fu, G. C. *J. Org. Chem.* **1998**, *63*, 4168

Greg Fu: Significant Research Areas

Pd/Ni Catalyzed Couplings

In the Beginning: Aryl Chlorides

while cross couplings with any bromides and iodides were common, those with any chlorides were rare, despite being more readily available and less expensive

■ why? bond strength (Ar-I < Ar-Br < Ar-CI)

reversibility of first step requires a reasonably strong reductant to favor products

Pd is rather electronegative (2.20), so how can this process be favored?

Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. **1979**, 101, 6319 Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. **1998**, 37, 3387

In the Beginning: Aryl Chlorides

while cross couplings with any bromides and iodides were common, those with any chlorides were rare, despite being more readily available and less expensive

■ why? bond strength (Ar-I < Ar-Br < Ar-CI)

Pd is rather electronegative (2.20), so how can this process be favored?

 nature of ligation is the most important factor determining the reactivity of a given metal (identity and stoichiometry)

3.6 mol% P(*t***-Bu)₃** 1.2 equiv CsCO₃ dioxane, 80-90 °C

1.5 mol% $Pd_2(dba)_3$

X = EDG, EWG Y = EDG, EWG

Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. **1979**, 101, 6319 Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. **1998**, 37, 3387

Why $P(t-Bu)_3$?

extremely electron rich (makes Pd a stronger reductant)

■ how can we measure this? pK_a of conjugate acid

рК _а
2.73
8.43
9.70
11.40

extremely large (favors singly ligated species – more free coordination sites on Pd)

■ how can we measure this? cone angles (Tolman angles)

θ	
M	
\sim	

phosphine	θ
PPh ₃	145°
P(<i>n</i> -Bu) ₃	132°
PCy ₃	170°
P(<i>t</i> -Bu) ₃	182°

Tolman, C. A. *Chem. Rev.* **1977**, *77*, 313 Rahman, M. M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. *Organometallics*, **1989**, *8*, 1 Netherton, M. R.; Fu, G. C. *Org. Lett.* **2001**, *3*, 4295

In the Beginning: Aryl Chlorides

changing base leads to milder, general conditions for aryl halides

electron rich chlorides require high temperatures; all others proceed at room temperature

aryl triflates require less sterically hindered phosphine \rightarrow 1 mol% Pd(OAc)₂, 1.2 mol% PCy₃

this represents a general procedure for Suzuki couplings with aryl/vinyl halides/triflates

similar, general conditions found for Heck, Stille, Sonagashira, and Negishi couplings

Pd[P(t-Bu)₃]₂ is a stable, commercially available solid that can be stored in air \sim 1 month

Littke, A. F.; Dai, C.; Fu, G. C. *J. Am. Chem. Soc.* **2000**, *122*, 4020 Littke, A. F.; Fu, G. C. *J. Am. Chem. Soc.* **2001**, *123*, 6989 Littke, A. F.; Schwarz, L.; Fu, G. C. *J. Am. Chem. Soc.* **2002**, *124*, 6343 Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C. *Org. Lett.* **2000**, *2*, 1729 Dai, C.; Fu, G. C. *J. Am. Chem. Soc.* **2001**, *123*, 2719 Kudo, N.; Perseghini, M.; Fu, G. C. *Angew. Chem. Int. Ed.* **2006**, *45*, 1282

Primary Alkyl Bromides as Substrates

sp³ halides are slow to undergo oxidative addition and quickly β -hydride eliminate

Primary Alkyl Bromides as Substrates

Netherton, M. R.; Dai, C.; Neuschütz, Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099 Lou, S.; Fu, G. C. Org. Synth. 2010, 87, 299

Primary Alkyl Chlorides and Tosylates as Substrates

■ further ligand optimization was required for alkyl tosylates:

	R =		
	<i>i-</i> Pr	Et	Ме
PCy ₂ R	44%	70%	48%
P <i>t-</i> Bu₂R			78%

Kirchhoff, J. H.; Dai, C.; Fu, G. C. *Angew. Chem. Int. Ed.* **2002**, *41*, 1945 Netherton, M. R.; Fu, G. C. *Angew. Chem. Int. Ed.* **2002**, *41*, 3910

Labelling Study: Mechanism of Oxidative Addition

Netherton, M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 3910

What About β -Hydride Elimination?

Heck reaction with aryl chlorides gives unexpected results:

Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 13178

this is accelerated when $P(t-Bu)_3$ is used, but the PCy_3 complex is stable to ligand loss

Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 13178

What About β -Hydride Elimination?

- PCy₃ (θ = 170°) and P*t*-Bu₂Me (θ = 161°) do not lose ligands rapidly
 - If therefore, their complexes do not undergo rapid β -hydride elimination
 - if $k_{\text{transmetalation}} > k_{\text{ligand loss}}$, efficient cross coupling can be acheived

For alkyl Stille coupling: Menzel, K.; Fu, G. C. *J. Am. Chem. Soc.* 2003, *125*, 3718
For alkyl Hiyama coupling: Lee, J.-Y.; Fu, G. C. *J. Am. Chem. Soc.* 2003, *125*, 5616
For alkyl Negishi coupling: Zhou, J.; Fu, G. C. *J. Am. Chem. Soc.* 2003, *125*, 12527
For alkyl Sonagashira coupling: Eckhardt, M.; Fu, G. C. *J. Am. Chem. Soc.* 2003, *125*, 13642
For alkyl Heck coupling: Firmansjah, L.; Fu, G. C. *J. Am. Chem. Soc.* 2007, *129*, 11340

Nickel Catalysis

Instead of palladium, nickel can also be used

- obvious benefit is cost (\$36/100 g Ni vs. \$368/5 g Pd)
- due to smaller orbital size, β -hydrogen elimination TS[‡] is 10-20 kcal/mol than palladium

lends itself perfectly to alkyl-alkyl cross coupling

drawbacks include sensitivity to variable conditions, oxygen sensitivity, mechanistic ambiguity

Koga, N.; Obara, S.; Kitaura, K.; Morokuma, K. J. Am. Chem. Soc. 1985, 107, 7109

Nickel Catalysis: Negishi Couplings

■ initially reaction was limited to primary zinc bromides

tolerates sterically hindered primary and secondary bromides and iodides

propargyl bromides and chlorides couple to secondary zinc bromides

Zhou, J.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 14726 Smith, S. W.; Fu, G. C. *Angew. Chem. Int. Ed.* **2008**, *47*, 9334

Nickel Catalysis: Asymmetric Negishi Couplings

Nickel Catalysis: Suzuki Couplings

Nickel Catalysis: Asymmetric Suzuki Couplings

Wurz, R. P.; Lee, E. C.; Ruble, J. C.; Fu, G. C. Adv. Synth. Catal. 2007, 349, 2345