

Epigenetics and Aging

Olivia Garry MacMillan Group Meeting May 13th, 2020

Aging = the time-dependent functional decline that affects most living organisms

Hallmarks of Aging

There are **nine hallmarks** that contribute to the aging process and determine the aging phenotype

Overview of Epigenetics

Chromatin structure Epigenetic changes

The Aging Epigenome

Nucleosomes Histone PTMs DNA Methylation Heterochromatin Relocalization of Chromatin Modifiers

Reprogramming the Epigenome

Calorie Restriction Small Molecules Cellular Reprogramming

The Central Dogma

Chromatin

Wallrath, L. L. *Curr. Opin. Genet. Dev.* **1998**, *5*, 147 Grewal, S. I. S.; Moazed, D. *Science*, **2003**, *301*, 798

Epigenetics

Epigenetics = transmittable changes in gene "on-off" states through modulation of chromatin which is not brought about by changes in the DNA sequence

Allis, D. C. et al. Epigenetics 2nd ed., CSHL Press, 2015

Nucleosome Remodeling

Nucleosomes consist of eight histone proteins (two each of H2A, H2B, H3 and H4)

Nucleosome remodeling complexes use ATP hydrolysis to change chromatin and

nucleosome composition non-covalently

Histone variants are proteins that substitute for the core histones (denoted as H3.#)

These complexes help chromatin accessibility for transcription factors and regulators

Histone Post-Translational Marks

Proteins which have a specific affinity for a tail modification are called **readers**. Covalent modifications are effected by histone-modifying enzymes called **writers**, and removed by **erasers**

Allis, D. C. et al. Epigenetics 2nd ed., CSHL Press, 2015

DNA Methylation

ncRNA = Functional RNA molecule that is transcribed from DNA but not translated into proteins

Overview of Epigenetics

Chromatin structure Epigenetic changes

The Aging Epigenome

Nucleosomes Histone PTMs DNA Methylation Heterochromatin Relocalization of Chromatin Modifiers

Reprogramming the Epigenome

Calorie Restriction Small Molecules Cellular Reprogramming

Epigenetics and Aging

Increased genomic instability Changes in gene expression by e.g loss of silencing

May contribute to hallmarks of aging

Epigenetics and Aging

Nucleosome Occupancy Loss in Yeast

H3 and H2A protein decrease during aging

Nucleosome Occupancy Loss in Yeast

H3 and H2A protein decrease during aging

Mutant yeast bred which lacked ASF1, a gene encoding for a histone chaperone (these were shorter lived)

A significant increase in histone transcripts was found in the aging population of WT yeast but not mutants

Nucleosome Occupancy Loss in Yeast

Epigenetics and Aging

Histone Variants e.g H3.3

Distal (cs1) Proximal (cs2) DKAA^{BKSADEID}GEVKKM Histone variants H3.3 and its cleaved products 31 (H3.3cs#) are found in an increased amount during senescence Chr-Free Chromatin S S G αMEK2 42 **Senescence** = cells stop dividing without 17 αH3 G = growing undergoing cell death - a hallmark of aging 17 αH3.3 S = senescent10

19

10-

αH3cs1

Histones

Overexpression of these variants induced senescence, indicating that these histone changes may drive aging Epigenetics and Aging

Changes in histone posttranslational modifications

Kane, A. E.; Sinclair, D. A. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 61

Histone Post-Translational Marks and Aging

Global increase in active histone marks and decrease in repressive histone marks Specific pattern of histone modifications differs between organisms, tissues of same individuals, and cells of same tissue

In human peripheral blood mononuclear cells there is **increased heterogeneity in histone modifications** between both cells and individuals with age

Benayoun B.; Pollina, E.A.; Brunet, A. Nat. Rev. Mol. Cell Biol. 2015, 16, 593

Cheung, P.; Vallania, F.; Warsinske, H. C.; Donato, M.; Schaffert, S.; Chang, S. E.; Dvorak, M.; Dekker, C. L.; Kuo, A. J. et al. Cell 2018, 173, 1385

Example: H3K27me3

important in ES cells establishing and maintaining cell identity

H3K27me3 is altered in a variety of cell types and species during aging

Increased levels of H3K27me3 with aging

Kilifish brain Mouse muscle stem cells

Mouse brain tissue

Decreased levels of H3K27me3 with aging

C.elegans Fibroblasts from patients with ageacceleration disorders

Kane, A. E.; Sinclair, D. A. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 61

H3K27me3 methylation is controlled by demethylases UTX-1, KDM6B/JMJD-3, PHF8/JMJD-1.2 and the methyltransferases Polycomb and SET-26

Evidence that increased demethylation is beneficial

Knockout of genes for methyltransferases Polycomb and SET-26 increases lifespan in Drosophila Overexpression of demethylases KDM6B/ JMJD-3 or PHF8/JMJD-1.2 increases lifespan in C.elegans

Siebold, A. P.; Banerjee, R.; Tie, F.; Kiss, D. L.; Moskowitz, J.; Harte, P. J. *PNAS* **2010**, *107*, 169 Labbadia, J.; Morimoto, R. I. *Mol. Cell.* **2015**, *59*, 639 Epigenetics and Aging

Kane, A. E.; Sinclair, D. A. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 61

DNA Methylation Changes with Age

Identical twins show large differences in the overall content and distribution in DNA methylation with age

Epigenetic drift = epigenetic modifications occurring as consequence of age

Kane, A. E.; Sinclair, D. A. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 61

Fraga, M. F.; Ballestar, E.; Paz, M. F.; Ropero, S.; Setien, F.; Ballestar, M. L.; Plass, C.; Esteller, M. et al. PNAS 2005, 102, 10604

Epigenetic age estimators = mathematical algorithms that use values assigned to the methylation state of specific CpGs in the genome to estimate the age of a person or biological sample

Positive epigenetic age acceleration, where an epigenetic age is older than expected (on the basis of their chronological age), is correlated with many age-related conditions

Alzheimer disease	Prefrontal cortex	Horvath's clock	Frailty	Blood	Horvath's clock and DNAm PhenoAge
Amyloid load and neuropathology	Prefrontal cortex	Horvath's clock	Gender	Blood and brain	All
Blood pressure (systolic)	Blood	Hannum's clock	Gestational week	Blood and brain	Horvath's clock
Body mass index	Liver		Glucose	Blood	All
body mass index	Liver	HOIVALITS CLOCK	Huntington disease	Blood and brain	Horvath's clock
Cancer	Blood	All clocks	Income	Blood	Hannum's clock and DNAm PhenoAge
Cardiovascular disease	Blood	DNAm PhenoAge	Insulin levels	Blood	All
Coronary heart disease	Blood	DNAm PhenoAge	Menopause	Blood and saliva	Horvath's clock
Cellular senescence (oncogene-induced)	Various	Horvath's clock	Mortality (all-cause)	Blood	All
Contonarian (offspring status)	Blood	Honyath's clock	Obesity	Liver and blood	All clocks
	Diodu		Osteoarthritis	Cartilage	Horvath's clock
Cholesterol, HDL (not LDL)	Blood	Hannum's clock and DINAm PhenoAge	Parkinson disease	Blood	All
Cognitive performance	Blood and brain	Horvath's clock and DNAm PhenoAge	Pubertal development	Blood	Horvath's clock
C-reactive protein	Blood	All	Sleep	Blood	Hannum's clock
Diet (carotenoids)	Blood	Hannum's clock and DNAm PhenoAge	Smoking	Blood	DNAm PhenoAce
Dementia	Blood	DNAm PhenoAge	TERT expression	Blood and fibroblasts	Howath's clock
Down syndrome	Blood and brain	Horvath's clock	Trick conider	Diood and horobiasis	
Education	Plead	Hannum's clock and DNAm Phone Ace	inglycendes	Blood	All
Education	DIOOD	nannum s clock and DivAm FrienoAge	Walking speed	Blood	DNAm PhenoAge
Exercise (recreational)	Blood	Hannum's clock and DNAm PhenoAge	Werner syndrome	Blood	Hannum's clock and Horvath's clock

DNA methylation-based biomarkers are the most promising molecular estimators of biological age

Is DNA Methylation a Contributor or a Consequence of Aging?

McClay, J. L.; Aberg, K. A.; Clark, S. L.; Nerella, S.; Kumar, G.; Xie, L. Y.; Hudson, A. D.; Harada, A. et al. *Hum. Mol. Genet.* **2014**, *23*, 1175 Raddatz, G.; Hagemann, S.; Aran, D.; Söhle, J.; Kulkarni, P. P.; Kaderali, L.; Hellman, A.; Winnefeld, M.; Lyko, F. *Epigenetics Chromatin* **2013**, *6*, 36

DNA Methylation and Macular Degeneration

Reduced DNA methylation at certain sites can lead to pathological effects e.g macular degeneration

While majority of identical twins get endstage AMD together, some do not 231 genes with different methylation patterns on their promoters

AMD

(n=34)

Epigenetics and Aging

Kane, A. E.; Sinclair, D. A. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 61

Heterochromatin Changes with Age

Heterochromatin characterized by presence of:

1. HP1 2. Decreased histone acetylation 3. Increased H3K9me3

Global reduction in HP1 and H3K9me3 levels, lamin A changes

Regions that are normally heterochromatic (e.g telomeres) become more euchromatic

Domains of heterochromatin form called senescent-associated heterochromatin foci (SAHFs)

Kane, A. E.; Sinclair, D. A. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 61

Heterochromatin Changes and HGPS

HGPS is caused by mutations in the nuclear structural protein lamin A, that results in a reduction in heterochromatin, HP1 and H3K9Me3 marks

These changes are also seen in normal aging

It is unknown which change drives the aging The delocalization of chromatin modifying factors (RCM) concept is a hypothesis for aging

RCM and Yeast

First evidence for RCM in yeast

Addition of null alleles for the histone deacetylase Sir2 dramatically

decreased lifespan

Sir2 was identified as a DNA repair protein that relocalizes from silent loci to sites of DNA repair

Martin, S. G.; Laroche, T.; Suka, N.; Grunstein, M.; Gasser, S. M. *Cell*, **1999**, *97*, 621 Kaeberlein, M.; McVey, M.; Guarente, L. *Genes Dev.* **1999**, *13*, 2570

RCM and Yeast

The absence of Sir2 at silent mating-type loci caused nuclear changes similar to aging yeast

	LOH rate per 10,000 cell divisions (95% CI)					
Genotype	You	ng	Old			
	MET15	SAM2	MET15	SAM2		
Wild type fob1∆/fob1∆ sir2∆/sir2∆	7 (5–10) 7 (4–10) 160 (120–200)	1 (0.5–2.0) 1 (0.4–3.0) 1 (0.4–3.0)	300 (100–500) 150 (90–230) 200* (50–300)	200 (50–400) 80 (30–200) †		

*The $sir2\Delta/sir2\Delta$ rate of *MET15* LOH in old cells was calculated by half-sector frequency. the $sir2\Delta/sir2\Delta$ mother cell produced more than a single daughter colony with a *SAM2* LOH event.

The addition of extra copy of Sir2 gene prevented the age-related relocalization and increased lifespan by 30%

Wild type yeast

Mutant missing a gene that leads to aging-related DNA damage

McMurray, M. A.; Gottschling, D. E. *Science* **2003**, *301*, 1908 Kaeberlein, M.; McVey, M.; Guarente, L. *Genes Dev.* **1999**, *13*, 2570

RCM in Mammals

In mammals, the sirtuins (SIRT 1 and SIRT 6) also relocalize from silent loci to sites of damage to facilitate DNA repair

Leads to transcription changes in 100s of genes, including changes characteristic of aging

Overexpression of SIRT1 or SIRT6 in aging mice can prevent these changes in gene expression

However, while RCM is established as a cause of aging in yeast, it is not in mammals and may or may not be reversible

Overview of Epigenetics

Chromatin structure Epigenetic changes

The Aging Epigenome

Nucleosomes Histone PTMs DNA Methylation Heterochromatin Relocalization of Chromatin Modifiers

Reprogramming the Epigenome

Calorie Restriction Small Molecules Cellular Reprogramming

There are **four main strategies** for slowing and reversing epigenetic change:

Calorie restriction, small molecules, overexpression of epigenetic regulators and cellular reprogramming

Calorie restriction, a reduction in food intake without malnutrition, is the strongest intervention for increasing lifespan across a wide range of species

First study in primates with 30% calorie restriction showed a remarkable difference in the onset and prevalence of age-related conditions

Colman, R. J.; Anderson, R. M.; Johnson, S. C.; Kastman, E. K.; Kosmatka, K. J.; Beasley, T. M.; Allison, D. B.; Weindruch, R. et al Science 2009, 325, 201.

Calorie Restriction and DNA Methylation

How does Calorie Restriction effect DNA Methylation?

Li, Y.; Liu, L.; Tollefsbol, T. O. The FASEB Journal 2010, 24, 1442

How does Calorie Restriction effect DNA Methylation?

Unnikrishnan, A.; Hadad, N.; Masser, D. R.; Jackson, J.; Freeman, W. M.; Richardson, A. Ann N Y Acad. Sci. 2018, 1418, 69

Calorie Restriction and Sirtuins

Calorie restriction induces SIRT1 expression in mammalian cells

Overexpression of SIRT1 mimics calorie restriction phenotypes, delaying aging in mice

Bordone, L.; Cohen, D.; Robinson, A.; Motta, M. C.; van Veen, E.; Czopik, A.; Steele, A. D.; Crowe, H.; Marmor, S. et al *Aging Cell* **2007**, 6, 759 Cohen, H. Y.; Miller, C.; Bitterman, K. J.; Wall, N. R.; Hekking, B.; Kessler, B.; Sinclair, D. A. et al *Science* **2004**, *305*, 390 Calorie Restriction and other HDACs

Roberts, M. N.; Wallace, M. A.; Tomilov, A. A.; Zhou, Z.; Marcotte, G. R.; Tran, D.; Perez, G.; Lopez-Dominguez, J. A. et al *Cell Metab.* **2017**, *26*, 539 Cao, T.; Zhou, X.; Zheng, X.; Cui, Y.; Tsien, J. Z.; Li, C.; Wang, H. Front. Aging Neurosci. **2018**,

Chemicals Against Aging

Small molecule approaches that mimic the effects of calorie restriction:

Zhang, W.; Qu, J.; Liu, G.; Belmonte, J. C. I. Nat. Rev. Mol. Cell Biol. 2020, 21, 137

Example: Rapamycin

Rapamycin extends lifespan by 10-30% in

mice

Rapamycin suppresses cell senescence and delays or treats most age-related diseases

e.g cancer, neurodegeneration

PERSPECTIVE | ALZHEIMER'S DISEASE

Rapamycin and Alzheimer's disease: Time for a clinical trial?

Blagosklonny, M. V. Aging 2019, 11, 8048

Miller, R. A.; Harrison, D. E.; Astle, C. M.; Fernandez, E.; Flurkey, K.; Han, M.; Javors, M. A.; Li, X. et al. Aging Cell 2014, 13, 468

Example: Rapamycin

Rapamycin causes changes to histone modifications, heterochromatin and gene silencing

Rapamycin shown to slow epigenetic aging in human keratinocytes independently of its effects on replicative senescence and proliferation

the life-extending property of rapamycin may include suppression of epigenetic aging

Kane, A. E.; Sinclair, D. A. *Crit. Rev. Biochem. Mol. Biol.* **2019**, *54*, 61 Horvath S.; Lu, A.T.; Cohen, H.; Raj, K. *Aging* **2019**, *11*, 3238

Cellular Reprogramming via iPSC overview

Human induced pluipotent stem cells are another strategy to reprogram the epigenome

Induced pluripotent stem cells (iPSCs) have been generated through forced expression of four transcription factors (Oct4, Sox2, cMyc, Klfc - OSKM) that are known to maintain pluripotency during embryonic development

Cellular Reprogramming via iPSC overview

Human induced pluipotent stem cells are another strategy to reprogram the epigenome

http://www.addgene.org/collections/stemcell/

Molecular Mechanisms of Reprogramming

After induction with OSKM, stochastic gene expression leads to multiple cell fates In rare cases in reprogrammable cells, early pluripotency genes become activated leading to Sox2 activation

Sox2 leads to activations of the rest of core pluripotency circuitry

Major epigenetic	Stochastic:	Deterministic:
remodeling in both phases	H3K4me3/H3K27me3	miRNA changes and DNA methylation

Buganim, Y.; Faddah, D. A.; Jaenisch, R. Nat. Rev. Genet. 2013, 14, 427

Polo, J. M.; Anderssen, E.; Walsh, R. M.; Schwarz, B. A.; Nefzger, C. M.; Lim, S. M.; Ramaswamy, S.; Hochedlinger, K. et al Cell 2012, 151, 1617

Epigenetic changes of aging can be slowed or reversed by reprogramming in human cells

Human senescent + centarian fibroblasts returned to iPSCs restores gene expression profiles to those of young cells

Horvath S. Genome Biol. 2013 14:R115

Yagi, T.; Kosakai, A.; Ito, D.; Okada, Y.; Akamatsu, W.; Nihei, Y.; Nabetani, A.; Ishikawa, F.; Arai, Y.; Hirose, N. et al. PLoS One. 2012 7:1

Cellular Reprogramming In Vivo

Yamanaka factors can induce in vivo reprogramming but not without side effects

Teratoma formation is generally a big safety issue

Whole-body introduction of OSKM factors in mice led to Nano expression in many tissues, but results in tumor development (teratomas)

altered epigenetics relating to somatic cell reprogramming drove tumorigenesis

Conclusions and Outlook

Elucidated many patterns of change of epigenetics during aging, but better understanding of specific rather than global change needed

If epigenetic changes do contribute to aging, then we have exciting results that these changes can be prevented or reversed

Further study on the epigenetic mechanisms underlying these intervention strategies will open new avenues for therapeutic strategies

Questions?

Epigenetic changes during aging and their reprogramming potential: Kane, A. E.; Sinclair, D. A. *Crit. Rev. Biochem. Mol. Biol.* **2019**, *54*, 61

The ageing epigenome and its rejuvenation: Zhang, W.; Qu, J.; Liu, G.; Belmonte, J. C. I. *Nat. Rev. Mol. Cell Biol.* **2020** *21*, 137