Chemical graph theory

Jacob Kautzky
MacMillan Group Meeting
April 3, 2018

Chemical graph theory

What is graph theory?

Historical uses of chemical graph theory

■ Isomer counting
■ Chemical bonding
■ Kinetics

Modern uses of chemical graph theory

What is a graph?

- A graph is defined as a non empty set of vertices and a set of edges

$$
\sum_{i=1}^{N} D(i)=2 M \quad N-M+F=2
$$

Walks, trails, paths, and cycles

Walk - an alternate sequence of vertices and edges, begining and ending with a vertice

■ Open - starts and ends at different vertices

■ Closed - starts and ends at the same vertex

Length (I) - number of occurence of edges in a walk

Trail - a walk where all edges are distinct

Path - a walk where all vertices are distinct

Distance (d) - the length of the shortest path between 2 vertices

Cycle - a path that starts and ends at the same vertex

Girth - length of the smalest cycle in a graph

Connected vs disconnected and simple, general, and multigraphs

Disconnected graph

Simple graph - a graph without loops or multiple edges between two vertices

multiple edges

Multigraph - a graph that allows multiple edges between 2 vertices

Forests and trees

isolated vertice

terminal
bridge

Forest - an acyclic graph
Bridge - an edge that when removed disconnects a graph

Spanning tree - a graph subgraph that includes all vertices of a graph with the minimal number of edges to remain connected

[^0]
Types of graphs - regular graphs

A regular graph is a graph where every vertex has the same valency

regular graph of degree 3

regular graph of degree 4

$$
M=0.5^{*} N^{*} D
$$

complete graph

- A graph where each vertice has $\mathrm{D}=\mathrm{N}-1$
- Denoted by K_{N}
- $M=\binom{N}{2}$
cycle

A graph where each vertice has $\mathrm{D}=2$

- Denoted by C_{N}
- A cycle is termed even/odd if N is even/odd

Vertex coloring

Assigning colors to vertices so that no two adjacent vertices have the same color

Chromatic number (k) - the minimal number of colors required to color a graph

$k=3$
$k=5$

$k=4$

Bipartite graph - a graph where the vertice set can be split into V_{1} and V_{2} where every edge connects a vertice in V_{1} to one in V_{2}

- A graph is a bipartite graph if and only if every cycle is of even number
- All bipartite graphs are 2 colorable

$K_{3,3}$

$\mathrm{K}_{4,2}$

Complete bipartite graph $\mathrm{K}_{\mathrm{s}, \mathrm{u}^{-}}$every vertex in V_{1} is joined to every vertex in V_{2}

Planar graphs

A graph is planar if it can be drawn such that no edges intersect

Planar

Not planar

Two graphs are isomorphic if there exists a 1:1 mapping from one onto the other (i.e. they are identical, but drawn differently)

Identifying isomorphic graphs without sampling all N ! mappings is challenging and remains a problem in graph theory

Planar graphs

A graph is planar if it can be drawn such that no edges intersect

Planar

Not planar

A graph is planar if it does not contain a subgraph homeomorphic to K_{5} or $\mathrm{K}_{3,3}$

Two graphs are homoemorphic if they can be obtained from the same graph by inserting new vertices of valency 2 into its edges

All planar graphs are 4 - colorable

Planar

Euler Circuit - the Königsberg bridge problem

Is it possible to cross every bridge exactly once and start and end at the same spot?

Graphical Model

Examples of Euler Circuits

Examples of Euler Paths

■ An Euler circuit is a path that starts and ends at the same vertices and traverses every edge exactly once

- Only occurs if every vertice is of even degree
- An Euler path is a path that traverses every edge exactly once, but doesn't start and end at the same vertice
- Only occurs if every vertice besides two are of even degree

Bonchev, D.; Rouvray, D. H. Chemical Graph Theory: Introduction and Fundamentals; Gordon and Brach Science Publishers S.A.: New York, 1991.

Is it possible to start at one vertice of a dodecahedron, travel to every other vertex on the polyhedra, and then return to the initial vertex without visiting any vertex besides the starting one twice?

Graphical Model

Hamiltonian Circuit

- A circuit that visits every vertex exactly once
- A mathematical formula for if a circuit exists has yet to be developed
- If the $\mathrm{D}(\mathrm{i}) \geq \mathrm{N} / 2$ for every vertex i , then a circuit exists

[^1]Digraphs, line graphs, and weighted graphs

Graphs can be converted to matrices and polynomials

Characteristic Polynomial

$$
P(G)=\operatorname{det}|\mathbf{X I}-\mathbf{A}|
$$

1
1
2
3
4
5
6
7
8 $\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 1 & 2 & 1 & 2 & 3 & 4 & 4 \\ 1 & 0 & 1 & 1 & 1 & 2 & 3 & 3 \\ 2 & 1 & 0 & 1 & 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 0 & 1 & 2 & 3 & 3 \\ 2 & 1 & 1 & 1 & 0 & 2 & 3 & 3 \\ 3 & 2 & 1 & 2 & 2 & 0 & 1 & 1 \\ 4 & 3 & 2 & 3 & 3 & 1 & 0 & 1 \\ 4 & 3 & 2 & 3 & 3 & 1 & 1 & 0\end{array}\right]$

Distance matrix

Applying graph theory to chemistry

Molecular Structures

■ vertices represent atoms

■ edges represent bonds

- weighted edges can represent double bonds or C-X bonds
- vertices represent intermediates

■ edges represent pathways

Graph Theory

Kinetics

- frequently digraphs

And many more...

- aromaticity
- depicting orbitals and electrons

■ NMR analysis

- crystals and clusters

■ mapping reaction space

Chemical graph theory

What is graph theory?

Historical uses of chemical graph theory

■ Isomer counting
■ Chemical bonding
■ Kinetics

Modern uses of chemical graph theory

Isomer counting

How can we go about counting the number of isomers possible for a given carbon number in a systematic fashion?
$C=1$
Me
$C=2$
$\mathrm{Me}^{-\mathrm{Me}}$
$C=3$

$C=4$

$C=5$

$C=6$

$C=7$

Isomer counting - the Caylee approach

Recursive approach

Counted the number of centric and bicentric trees

Developed methods for counting rooted and unrooted trees and then limited them to 4 vertices

Sucessfully counted the nubmer of C1-C11 alkanes

Rather tedious process

Gave incorrect answers for C12 and C13 alkanes

centric tree
bicentric tree

Isomer counting - the Henze-Blair approach

Counting the number of alcohols on acyclic alkanes

Let T_{N} be the number of alcohols of carbon N and p_{N}, s_{N}, and t_{N} be the number of primary, secondary and tertiary alcohols respectively

Then $T_{N}=p_{N}+s_{N}+t_{N}$
primary alcohols

$$
\mathrm{p}_{\mathrm{N}}=\mathrm{T}_{\mathrm{N}-1}
$$

$$
\mathrm{N}-1
$$

can be thought of as counting
HO ${ }_{\mathrm{N}-1}$

secondary alcohols

Isomer counting - the Henze-Blair approach

tertiary alcohols

A tertiary alochol can be imagined to arise from combining 3 alkyl radicals R_{i}, R_{j}, and R_{k} with i, j, and k carbons respectively to the COH group

All possible permutations where $\mathrm{i}>\mathrm{j}>\mathrm{k}$

All possible permutations where $\mathrm{i}=\mathrm{j}$ and $2 \mathrm{i}+\mathrm{k}=\mathrm{N}-1$

All possible permutations where $\mathrm{i}=\mathrm{j}=\mathrm{k}$ and $3 \mathrm{i}=\mathrm{N}-1$

$$
\begin{array}{r}
i>j>k ; i+j+k=N-1 \\
\quad i=j ; i+j+k=N-1 \\
i=j=k ; i+j+k=N-1
\end{array}
$$

This approach has been expanded to deal with structural saturated hydrocarbons, unsaturated hydrocarbons, alkynes and even stereoisomeric alcohols

Isomer counting - the Pólya enumeration approach

Takes into account symmetry operations

Produces a polynomial that allows for isomer enumeration
f and g are equivalent if and only if there $\exists a$
permutation a such that $a(f)=g$
Zyklenzeiger: $\quad Z(A)=\frac{1}{\mid \mathrm{A}} \sum_{a \in \mathrm{~A}} \prod_{r} s_{r}^{j_{r}(a)}$

How many ways are there to substitute a benzene ring with an R group X times?

Cycle index term

s_{1}^{6}
$2 s_{6}^{1}$
$2 s_{3}^{2}$
(14)(25)(36)
s_{2}^{3}
(16)(25)(34), (12)(36)(45),
(14)(23)(56)
$3 s_{2}^{3}$
(1)(4)(26)(35), (3)(6)(15)(24),
(2)(5)(13)(46)

Permutation	Cycle index term
(1) (2) (3) (4) (5) (6)	s_{1}^{6}
(123456), (165432)	$2 s{ }_{6}^{1}$
(153)(264), (135)(246)	$2 s_{3}^{2}$
(14)(25)(36)	s_{2}^{3}
$\begin{gathered} (16)(25)(34),(12)(36)(45), \\ (14)(23)(56) \end{gathered}$	$3 s_{2}^{3}$
$\begin{gathered} (1)(4)(26)(35),(3)(6)(15)(24), \\ (2)(5)(13)(46) \end{gathered}$	$3 s_{1}^{2} s_{2}^{2}$

(1) (2) (3) (4) (5) (6)
(123456), (165432)
(153)(264), (135)(246)

Permutation

Point group: D_{6}

One vertical 2-fold rotation C_{2}
Three in plane binary axes C_{2} that bisect 0 carbons

Three in plane binary axes C_{2} that bisect 2 carbons

One identity E
Two 6-fold rotations $+/-\mathrm{C}_{6}$
Two 3-fold rotations $+/-\mathrm{C}_{3}$

Isomer counting - the Pólya enumeration approach

Takes into account symmetry operations
Produces a polynomial that allows for isomer enumeration
f and g are equivalent if and only if there $\exists a$ permutation a such that $a(f)=g$

Zyklenzeiger: $\quad Z(A)=\frac{1}{\mid \mathrm{A}} \quad \sum_{a \in \mathrm{~A}} \prod_{r} s_{r}^{j_{r}(a)}$

$$
Z\left(\mathrm{D}_{6}\right)=1 / 12\left\{s_{1}^{6}+3 s_{1}^{2} s_{2}^{2}+4 s_{2}^{3}+2 s_{3}^{2}+2 s_{6}^{1}\right\}
$$

$$
\begin{aligned}
& \text { substituting } \quad s_{y}^{z}=\left(1+x^{y}\right)^{z} \\
& 2 s_{6}^{1} \\
& 2 s_{3}^{2} \\
& Z\left(D_{6}\right)=1 / 12\left[(1+x)^{6}+3^{*}(1+x)^{2} *\left(1+x^{2}\right)^{2}+4^{*}\left(1+x^{2}\right)^{3}+\right. \\
& \left.2^{*}\left(1+x^{3}\right)^{2}+2^{*}\left(1+x^{6}\right)\right] \\
& \left.\mathrm{Z}\left(\mathrm{D}_{6}\right)=1+\mathrm{x}+3 \mathrm{x}^{2}+3 \mathrm{x}^{3}+3 \mathrm{x}^{4}+\mathrm{x}^{5}+\mathrm{x}^{6} \quad \begin{array}{cc}
\text { There are } 3 \text { unique isomers } \\
\text { with } 4 \mathrm{R} \text { substituents }
\end{array}\right) ~ 3 s_{2}^{3}
\end{aligned}
$$

How many ways are there to substitute a benzene ring with an R group X times?

Point group: D_{6}

Cycle index term

$$
s_{1}^{6}
$$

Isomer counting - the Pólya enumeration approach

Takes into account symmetry operations

Produces a polynomial that allows for isomer enumeration

f and g are equivalent if and only if there \exists a

permutation a such that $\mathrm{a}(f)=\mathrm{g}$
Zyklenzeiger: $\quad Z(A)=\frac{1}{\mid A} \quad \sum_{a \in A} \prod_{r} s_{r}^{j_{r}(a)}$

How many ways are there to substitute a benzene ring with an R group X times?

Point group: D_{6}
$Z\left(D_{6}\right)=1+x+3 x^{2}+3 x^{3}+3 x^{4}+x^{5}+x^{6}$
1
1
3

Pólya, G. Acta Math. 1937, 68, 1937.

Isomer counting - the Pólya enumeration approach

How many ways are there to substitute a benzene ring with an R group X times?

Point group: D_{6}

This method has been extended to isotopic isomers, cyclic molecules, benzenoid hydrocarbons, porphyrins, chiral and achiral alkenes, ferrocenes, clusters, and inorganic structures, among others

Isomer counting - the N-tuple code

Assigns each tree a unique code

Isomorphic compounds have the same code

Start from most substituted vertice

Remove vertex and incident edges, then examine the subtrees

Have been used for generation and enumeration of acyclic graphs

Produce the lexicographically largest code

Chemical graph theory

What is graph theory?

Historical uses of chemical graph theory

■ Isomer counting

■ Chemical bonding
■ Kinetics

Modern uses of chemical graph theory

NMR assignment of methyl peaks in large molecules via MAGMA

■ NMR spectroscopy can probe both structure and dynamics of biomolecules at atomic resolutions

- Methyl-TROSY can be utilized to study protein complexes up to 1 MDa in molecular weight
- A major challenge to this approach is the need to match resonances in the NMR with specific atoms
- Generally obtained by either monitoring assignments from smaller in tact proteins or individually changing residues and observing the NMR perturbations

Would it be possible to use graph theory to simplify this process?

Pritišanac, I.; Degiacomi, M. T.; Alderson, T. R.; Carneiro, M. G.; AB, E.; Siegal, G.; Baldwin, A. J. J. Am. Chem. Soc. 2017, 139, 9523.

NMR assignment of methyl peaks in large molecules via MAGMA

- observed interactions
- deliberate error

Pritišanac, I.; Degiacomi, M. T.; Alderson, T. R.; Carneiro, M. G.; AB, E.; Siegal, G.; Baldwin, A. J. J. Am. Chem. Soc. $2017,139,9523$.

NMR assignment of methyl peaks in large molecules via MAGMA

Kinetic Analysis with Prim's algorithm

Minimum spanning tree - a subset of edges that connect a graph together with the minimal possible weight

Prim's algorithm finds minimum spanning by repeatedly adding the cheapest vertice to the spanning tree

Yoshimura, T.; Maeda, S.; Taketsugu, T.; Sawamura, M.; Morokuma, K.; Mori, S. Chem. Sci. 2017, 8, 4475.

Kinetic Analysis with Prim's algorithm

Kinetic analysis with Prim's algorithm

Dissociative
Associative

■ Green paths represent earlier in the pathway and red later
Yoshimura, T.; Maeda, S.; Taketsugu, T.; Sawamura, M.; Morokuma, K.; Mori, S. Chem. Sci. 2017, 8, 4475.

Kinetic analysis with Prim's algorithm

Dissociative

- Green paths represent earlier in the pathway and red later

Yoshimura, T.; Maeda, S.; Taketsugu, T.; Sawamura, M.; Morokuma, K.; Mori, S. Chem. Sci. 2017, 8, 4475.

Can we use graph theory to predict reactions?

High-throughput computer-based reaction predictions (HTRP) can be used for de novo drug design, virtual chemical space exploration, and to predict if retrosynthesis disconnections are feasible

Can we use this to predict reactions?

■ Constructed a knowledge graph from 14.4 million reactants and 8.2 million binary reactions

- Vertices represent reactants and reaction conditions with edges connecting reactants to reaction conditions and other reactants
- Predict reactions, products and reaction conditions
- Correctly predicted the right product with 67.5% accuracy on 180,000 reactions that were withheld from the data set
- Able to predict the products and reaction conditions of 'novel' reactions with decent efficiency

Can we use graph theory to predict reactions?

High-throughput computer-based reaction predictions (HTRP) can be used for de novo drug design, virtual chemical space exploration, and to predict if retrosynthesis disconnections are feasible

Can we use this to predict reactions?

- Constructed a knowledge graph from 14.4 million reactants and 8.2 million binary reactions
- Vertices represent reactants and reaction conditions with edges connecting reactants to reaction conditions and other reactants
- Predict reactions, products and reaction conditions
- Correctly predicted the right product with 67.5% accuracy on 180,000 reactions that were withheld from the data set
- Able to predict the products and reaction conditions of 'novel' reactions with decent efficiency

Can we use graph theory to predict reactions?

Segler, M. H. S.; Waller, M. P.; Chem. Eur. J. 2017, 23, 6118.

Can we use graph theory to predict reactions?

Would it be possible to develop a reaction between these 2 components?

Segler, M. H. S.; Waller, M. P.; Chem. Eur. J. 2017, 23, 6118.

Can we use graph theory to predict reactions?

Discovered

Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, J. X.; Alper, H. Angew. Chem. Int. Ed. 2015, 54, 1625

Applying graph theory to chemistry

Molecular Structures

■ vertices represent atoms

■ edges represent bonds

- weighted edges can represent double bonds or $\mathrm{C}-\mathrm{X}$ bonds

Polymers

■ vertices represent building blocks

■ edges represent connections

Graph Theory

Kinetics

- vertices represent intermediates

■ edges represent pathways

- frequently digraphs

And many more...

- aromaticity
- depicting orbitals and electrons

■ NMR analysis

- crystals and clusters

■ mapping reaction space

Questions

Figure 13. A plot showing the annual number of papers published in the area of chemical graph theory for the years 1970-1986. Note the annual growth rate of around 25% for this period.

[^0]: Bonchev, D.; Rouvray, D. H. Chemical Graph Theory: Introduction and Fundamentals; Gordon and Brach Science Publishers S.A.: New York, 1991.

[^1]: Bonchev, D.; Rouvray, D. H. Chemical Graph Theory: Introduction and Fundamentals; Gordon and Brach Science Publishers S.A.: New York, 1991.

