Catalysis by Small Peptides an Introduction

Mario Wiesenfeldt

November 4th, 2020

Catalysis by small peptides

 NH_2

CO₂H

modular and facile synthesis

non-covalent interactions with substrates - high selectivity

nonnatural amino acids – diverse reactivity

Comparison between enzymes, transition metals, and small peptides: Lewis, C. J. *ACS Catal.* **2013**, *3*, 2954. (Selected) nobel lectures on asymmetric catalysis and directed evolution: Noyori, R. *Angew. Chem., Int. Ed.* **2019**, *58*, 14420 – Arnold, F. *Angew. Chem., Int. Ed.* **2002**, *41*, 2008.

Nonnatural reactivity by photocatalysis: Biegasiewicz, K. F.; Cooper, S. J.; Gao, X.; Oblisnky, D.; Kim, J. H.; Garfinkle, S. E.; Joyce, L. A.; Sandoval, B.; Scholes, G. D.; Hyster, T. *Science* 2019, *364*, 1166. Comparison between enzymes, transition metals, and small peptides:
Lewis, C. J. ACS Catal. 2013, *3*, 2954. (Selected) nobel lectures on asymmetric catalysis and directed evolution: Noyori, R. Angew. Chem., Int. Ed. 2019, *58*, 14420 – Arnold, F. Angew. Chem., Int. Ed. 2002, *41*, 2008.

Introduction

- Catalytically relevant properties of small peptides
- Small peptides as organocatalyst
- Small peptides in Lewis acid and transition metal catalysis
- Small peptides in photoredox catalysis
- Summary

This group meeting does not cover the available literature comprehensively. Instead, selected key studies are discussed in order to explain the underlying concepts.

Introduction

Catalytically relevant properties of small peptides

- Small peptides as organocatalyst
- Small peptides in Lewis acid and transition metal catalysis
- Small peptides in photoredox catalysis
- Summary

This group meeting does not cover the available literature comprehensively. Instead, selected key studies are discussed in order to explain the underlying concepts.

- backbone serves as a tailor-made spacer between the *catalytically active moiety* and the substrate binding moiety
- complex three-dimensional geometry determined by primary and secondary protein structure
- conformational flexibility due to high number of rotatable bonds

Peptide design is often centered around such structures with reduced conformational flexibility.

Review: Metrano, A. J.; Chinn, A. J.; Shugrue, C. R.; Stone, E. A.; Kim, B.; Miller, S. Chem. Rev. 2020, asap.

Design of the Secondary Structure

Lichtor, P. A.; Miller, S. J. J. Am. Chem. Soc. 2014, 136, 5301. Abascal, N. C.; Lichtor, P. A.; Giuliano, M. W.; Miller, S. J. Chem. Sci. 2014, 5, 4504.

Design of the Secondary Structure

Lichtor, P. A.; Miller, S. J. J. Am. Chem. Soc. 2014, 136, 5301. Abascal, N. C.; Lichtor, P. A.; Giuliano, M. W.; Miller, S. J. Chem. Sci. 2014, 5, 4504.

Facile synthesis of large peptide libraries by split and pool synthesis

- exponential increase of complexity with the number of cycles
- biased libraries by control the introduction of specific amino acids in each cycle

Visualization of hits by co-immobilized fluorescent tags

Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2001, 123, 6496.

Co-immobilization of substrates

Related work has been reported by Jacobsen, Bradley, Barbas, Davies, Berkessel, Snapper, Hoveyda, and others.

Sorting of individual beads into individual vials

Lichtor, P.; Miller, S. J. ACS Comb. Sci. 2011, 13, 321.

Krattiger, P.; McCarthy, C.; Pfaltz, A.; Wennemers, H. Angew. Chem., Int. Ed. 2003, 42, 1722.

Introduction

- Catalytically relevant properties of small peptides
- Small peptides as organocatalyst
- Small peptides in Lewis acid and transition metal catalysis
- Small peptides in photoredox catalysis
- Summary

This group meeting does not cover the available literature comprehensively. Instead, selected key studies are discussed in order to explain the underlying concepts.

98%, **90% ee**

Krattinger, P.; Kovasy, R.; Revell, J. D.; Ivan, S.; Wennemers, H. Org. Lett. 2005, 7, 1101.

Wiesner, M.; Revell, J. D.; Wennemers, H. Angew. Chem., Int. Ed. 2008, 47, 1871.

Siebler, C.; Maryasin, B.; Kuemin, M.; Erdmann, R. S.; Rigling, C.; Grünenfelder, C.; Ochsenfeld, C.; Wennemers, H. *Chem. Sci.* 2015, *6*, 6725. Bächle, F.; Duschmalé, J.; Ebner, C.; Pfaltz, A.; Wennemers, H. *Angew. Chem., Int. Ed.* 2013, *52*, 12619.

Wiesner, M.; Neuburger, M.; Wennemers, H. Chem. Eur. J. 2009, 15, 10103.

Schnitzer, T.; Wennemers, H. J. Am. Chem. Soc. 2017, 139, 15356.

A higher proportion of the *trans* confomer leads to a higher enantio- and diastereoselectivity.

1 mol% NMM, 20 °C, 2 h

Schnitzer, T.; Wennemers, H. J. Am. Chem. Soc. 2017, 139, 15356.

Lowest catalyst loading of a secondary amine organocatalyst reported to date.

Schnitzer, T.; Wennemers, H. J. Am. Chem. Soc. 2017, 139, 15356.

Lewis, C. A.; Gustafson, J. L.; Chiu, A.; Balsells, J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. *J. Am. Chem. Soc.* 2008, 130, 16358. Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.; Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. *J. Am. Chem. Soc.* 2006, *128*, 16454.

Design of the initial library

Lewis, C. A.; Gustafson, J. L.; Chiu, A.; Balsells, J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. *J. Am. Chem. Soc.* 2008, 130, 16358. Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.; Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. *J. Am. Chem. Soc.* 2006, 128, 16454.

Optimization workflow

Lewis, C. A.; Gustafson, J. L.; Chiu, A.; Balsells, J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. *J. Am. Chem. Soc.* 2008, 130, 16358. Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.; Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. *J. Am. Chem. Soc.* 2006, 128, 16454.

Schreiner's Lipophilic Oligopeptide Catalyst

Mechanistic information

- no secondary structure central adamantyl group separates both ends
- adamantyl group holds the 3 stereocenters that determine stereochemistry in place
- H-bonding to second hydroxyl group
- Dispersion interaction between hydrophobic substituents and substrate

Müller, C. E.; Zell, D.; Hrdina, R.; Wende, R. C.; Wanka, L. Schuler, S. M. M.; Schreiner, P. R. *J. Org. Chem.* **2013**, *78*, 8465. Müller, C. E.; Wanka, L.; Jewell, K.; Schreiner, P. R. *Angew. Chem., Int. Ed.* **2008**, *47*, 6180.

Desymmetrization of cis-Diols

Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L. Nature 2006, 443, 67.

Müller, C. E.; Hrdina, R.; Wende, R. C.; Schreiner, P. R. Chem. Eur. J. 2011, 17, 6309.

Diener, M. E.; Metrano, A. J.; Kusano, S.; Miller, S. J. J. Am. Chem. Soc. 2015, 137, 12369. Barrett, K. T.; Miller, S. J. J. Am. Chem. Soc. 2013, 135, 2963. Garand, E.; Kamrath, M. Z.; Jordan, P. A.; Wolk, A. B.; Leavitt, C. M.; McCoy, A. B.; Miller, S. J.; Johnson, M. A. Science 2012, 335, 694.
Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251.

Crawford, J. M.; Stone, E. A.; Mertrano, A. J.; Miller, S. J.; Sigman, M. S. *J. Am. Chem. Soc.* **2018**, *140*, 868. Mertrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.; Hurtley, A. E.; Miller, S. J. *J. Am. Chem. Soc.* **2017**, *139*, 491. Mertrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.; Miller, S. J. *Chem. Commun.* **2016**, *52*, 4816.

Crawford, J. M.; Stone, E. A.; Mertrano, A. J.; Miller, S. J.; Sigman, M. S. *J. Am. Chem. Soc.* **2018**, *140*, 868. Mertrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.; Hurtley, A. E.; Miller, S. J. *J. Am. Chem. Soc.* **2017**, *139*, 491. Mertrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.; Miller, S. J. *Chem. Commun.* **2016**, *52*, 4816.

Yan, X. C.; Metrano, A. J.; Robertson, M. J.; Abascal, N. C.; Tirado-Rives, J.; Miller, S. J.; Jorgensen, W. L. ACS Catal. 2018, 8, 9968.

Yan, X. C.; Metrano, A. J.; Robertson, M. J.; Abascal, N. C.; Tirado-Rives, J.; Miller, S. J.; Jorgensen, W. L. ACS Catal. 2018, 8, 9968.

Site-Selective Polyene Oxidation

Abascal, N. C.; Lichtor, P. A.; Giuliano, M. W.; Miller, S. J. *Chem. Sci.* **2014**, *5*, 4504. Lichtor, P. A.; Miller, S. J. *J. Am. Chem. Soc.* **2014**, *136*, 5301. Lichtor, P. A.; Miller, S. J. *Nat. Chem.* **2012**, *4*, 990.

Introduction

- Catalytically relevant properties of small peptides
- Small peptides as organocatalyst
- Small peptides in Lewis acid and transition metal catalysis
- Small peptides in photoredox catalysis
- Summary

This group meeting does not cover the available literature comprehensively. Instead, selected key studies are discussed in order to explain the underlying concepts.

Key references: Deng, H.; Isler, M. P.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2002, 41, 1009. Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 755. Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 984. Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem., Int, Ed. 2001, 40, 1456. Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.; Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 4284.

Enantioselective cyclopropanation

Samasivan, R.; Ball, Z. T. *Angew. Chem., Int. Ed.* **2012**, *51*, 8568. Samasivan, R.; Ball, Z. T. *J. Am. Chem. Soc.* **2010**, *132*, 9289.

Structure-Selective Protein Functionalization

FG RO₂C Ph NHAc COR O Rh O Rh O Rh O Rh O ROC

close proximity

E3/K3 coiled coil assembly places side chain in close proximity of the rhodium carbenoid

Copper-Peptide-Mediated Cross-Coupling of Diarylmethanes

Kim, B.; Chinn, A. J.; Fandrick, D. R.; Senayake, C. H.; Singer, R. A.; Miller, S. J. J. Am. Chem. Soc. 2016, 138, 7939.

Copper-Peptide-Mediated Cross-Coupling of Diarylmethanes

Kim, B.; Chinn, A. J.; Fandrick, D. R.; Senayake, C. H.; Singer, R. A.; Miller, S. J. J. Am. Chem. Soc. 2016, 138, 7939.

Copper-Peptide-Mediated Cross-Coupling of Diarylmethanes

identification of the substrate-peptide interaction

Kwon, Y.; Chinn, A. J.; Kim, B.; Miller, S. J. *J. Am. Chem. Soc.* **2018**, *57*, 6251. Chinn, A. J.; Kim, B.; Kwon, Y.; Miller, S. J. *J. Am. Chem. Soc.* **2017**, *139*, 18107. Introduction

- Catalytically relevant properties of small peptides
- Small peptides as organocatalyst
- Small peptides in Lewis acid and transition metal catalysis
- Small peptides in photoredox catalysis
- Summary

This group meeting does not cover the available literature comprehensively. Instead, selected key studies are discussed in order to explain the underlying concepts.

Enantioselective [2+2] Photocycloaddition

Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392.

Photoredox strategy for an out-of-equilibrium deracemization

Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Science 2019, 366, 364.

Light-Driven Deracemization

- A diverse set of reactivity can be achieved using organocatalytic, organometallic, or merged activation modes.
- Peptides may control selectivity in catalytic transformations using non-covalent interactions.
- Control of the secondary structure is vital in order to place reactive groups in close proximity.
- A variety of screening technologies may assist in the discovery process.

Thank you for your attention.

Questions?