Enamine

May 16th, 2023 Will Lyon MacMillan Group Princeton University

Virtual ligand screening for drug discovery

Virtual screening of ligand-receptor docking enables early stage drug discovery

How can this be applied to libraries with billions of compounds?

Deane, C.; Mokaya, M. Nature 2021, 601, 322.; Sadybekov, A. A. et al. Nature 2021, 601, 452.

Generation of a minimal enumeration library

Sadybekov, A. A. et al. Nature 2021, 601, 452.

Ligand-receptor docking

1,000 – 10,000 minimal fragments selected

Sadybekov, A. A. et al. Nature 2021, 601, 452.

Full enumeration of fragments

1,000 – 10,000 minimal fragments selected

Candidate generation

1,000,000 enumerated compounds

Docking screen and rigorous filtering (druglikeness, novelty, etc.)

~100 compounds for biological testing

88% success rate for REAL compound synthesis

Optimization and lead compound development

Sadybekov, A. A. et al. Nature 2021, 601, 452.

Enamine REAL database

Virtual screening of immense library enabled by REAL database

Development of REAL database

What has driven this great increase in fragments and reactions?

Shivanyuk, A. N. et al. Chem. Today 2005, 25, 58.; Real Compounds. https://enamine.net/compound-collections/real-compounds

Enamine as a research institution

Pavel Mykhailiuk

Enamine's publications from 2019–2022

Outline

Outline

Aromatic bioisosteres in medicinal chemistry

Unexpected discovery of 3-azabicyclo[3.1.1]heptane

Lewis acid coordination accelerates ring-opening

Dibchak, D. et al. ChemRxiv 2023, doi: 10.26434/chemrxiv-2023-jbb0r

Synthesis and scope

Bioisosteric replacement of pyridine ring

How does this bioisostere perform in a biological setting?

Dibchak, D. et al. ChemRxiv 2023, doi: 10.26434/chemrxiv-2023-jbb0r

Direct bioisosteric replacement of rupatadine

3-azabicyclo[3.1.1]heptane is a bioisostere of pyridine

Dibchak, D. et al. ChemRxiv 2023, doi: 10.26434/chemrxiv-2023-jbb0r

Para-substituted phenyl bioisosteres

How can this strained core be readily synthesized?

Levterov, V. V. et al. ChemRxiv 2023, doi: 10.26434/chemrxiv-2023-rbgz3

Synthesis of 2-oxabicyclo[2.2.2]octane cores

Bioisosteric replacement of phenyl ring

Geometric and electronic parameters match closely

- Physicochemical properties solubility: 1.1-fold increase lipophilicity: 8-fold decrease

metabolic stability: 1.5-fold increase

imatinib (anticancer)

3D-imatinib (anticancer)

Meta-substituted phenyl bioisosteres

What other methods exist for forming 2-substituted BCPs?

2-Fluoro-substituted BCP synthesis and scope

Bychek, R.; Mykhailiuk, P. K. Angew. Chem. Int. Ed. 2022, 61, e202205103

2-Fluoro-substituted BCP applications

Ortho-substituted phenyl bioisosteres

How can this oxabicyclohexane be synthesized?

Denisenko, A. et al. ChemRxiv 2022, doi: 10.26434/chemrxiv-2022-tln0p-v2

Synthesis and scope of 2-oxabicyclo[2.1.1]hexane cores

Limited to aryl substituents (triplet sensitization of styrene)

Denisenko, A. et al. ChemRxiv 2022, doi: 10.26434/chemrxiv-2022-tln0p-v2

Replacement of ortho-substituted phenyl ring

Are these BCH bioisosteres still potent?

Replacement of ortho-substituted phenyl ring

Bicyclopentane 1,3-diacid

How is this made industrially? What drives the price down?

\$18/g - in stock

photochemical flow chemistry

Ripenko, V. et al. J. Org. Chem. 2021, 86, 14061.

Large-scale synthesis of bicyclopentane 1,3-diacid

propellane + diacetyl

flow photoreactor

product

Large-scale synthesis of bicyclopentane 1,3-diacid

Outline

Outline

Spirocycles are privileged bioactive molecules

Toselli, F. et al. J. Med. Chem. 2019, 62, 7383.

Spirocyclic pyrrolidines in medicinal chemistry

Synthesis of spirocyclic pyrrolidines

Chalyk, B. A. et al. *Eur. J. Org. Chem.* **2017**, 4530.

Physicochemical properties

Spirocyclic core imparts desirable physiochemical properties

Chalyk, B. A. et al. Eur. J. Org. Chem. 2017, 4530.

An unexpected reaction

Bulky substituents stabilize oxetane-carboxylic acid

Chalyk, B. et al. Org. Lett. 2022, 24, 4722.

Reaction development

Structurally diverse lactones produced efficiently

Chalyk, B. et al. Org. Lett. 2022, 24, 4722.

Azaspiro[3.3]heptanes as piperidine bioisosteres

Piperidine: 3rd most abundant ring in drug molecules

How can these potential bioisosteres be readily synthesized?

Synthesis of 1-Azaspiro[3.3]heptanes

Isosteric replacement of piperidine with 1-Azaspiro[3.3]heptane

Spiro-bupivacaine shows significant analgesic activity

Kirichok, A. A. et al. ChemRxiv 2023, doi: 10.26434/chemrxiv-2023-rpjld

Outline

Outline

Cyclopropanes in medicinal chemistry

Shearer, J. et al. J. Med. Chem. 2022, 65, 8699.; Talele, T. T. J. Med. Chem. 2016, 59, 8712.

Synthesis of trifluoromethylated cyclopropane building blocks

Ahunovych, V. et al. J. Org. Chem. 2023, 88, 3859.

Diazirines in chemical biology

Are these aliphatic fluorinated diazirines useful in chemical biology?

Synthetic route to aliphatic CF₃-substituted diazirines

Synthetic route to aliphatic CF₂H-substituted diazirines

How do these novel diazirines perform in biological settings?

Evaluation of aliphatic CF₃-substituted diazirines

Aliphatic CF₃-substituted diazirines are suitable for labelling experiments

Evaluation of aliphatic CF₃-substituted diazirines on drug molecules

Aliphatic CF₃-substituted diazirines can be compatible with drug molecules

Evaluation of aliphatic CF₂H-substituted diazirines

Aliphatic CF₂H-substituted diazirines are not suitable for labelling experiments

Questions?

