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An essential component of the drug discovery and develop-
ment process is the thorough elucidation of a drug molecule’s 
action and toxicity (1–9). Despite rapid advancements in an-
alytical techniques over the past 20 years, the introduction of 
isotopic labels, which integrates a unique signal into a mole-
cule without drastically altering its function, remains the 
most effective method to detect and quantify drugs and drug 
metabolites in both in vivo and in vitro studies (1–6). Re-
cently, the ability to introduce hydrogen isotopes at non-la-
bile C–H moieties has seen the emergence of deuterium (2H) 
and tritium (3H) as cheaper and more readily accessible alter-
natives to 13C and 14C for the synthesis of isotopically labeled 
drug analogs, especially when high isotopic incorporation is 
desired (1–6). In particular, highly deuterated analogs of drug 
molecules are used in absorption, distribution, metabolism 
and excretion (ADME) studies, where they are ideal internal 
standards for mass spectrometry-based quantification in an-
imal and human samples, as they negate matrix effects which 
can interfere with accurate quantification (10, 11). On the 
other hand, high specific activity tritium analogs are critical 
for the accurate quantification of nanomolar ligand binding 
affinity studies, as well as the imaging of in vivo compound 
distribution via autoradiography (7–9). 

Currently, a large majority of deuterium- and tritium-la-
beled pharmaceutical compounds are synthesized via multi-
step procedures involving the reduction of halogenated or 
unsaturated drug precursors (1–6). However, advances in 
transition metal-catalyzed C–H activation have allowed for 
the direct hydrogen isotope exchange (HIE) of C–H bonds for 

deuterium or tritium, enabling the synthesis of labeled com-
pounds in a single step without the need for resynthesis (12–
14). This straightforward approach has recently found wide-
spread application in the pharmaceutical industry, where the 
increasing impact of early-stage ligand binding assays and 
ADME studies on drug discovery has led to a rising demand 
for the efficient synthesis of isotopically labeled pharmaceu-
tical compounds (2). 

Currently, transition metal-catalyzed HIE reactions at ar-
omatic C(sp2)–H moieties are well established (Fig. 1A). For 
example, cationic iridium(I) complexes have long been used 
to selectively label sites ortho to directing groups on aromatic 
rings (12, 13). More recently, Chirik and co-workers reported 
the use of an iron catalyst for the deuteration and tritiation 
of pharmaceutical drugs at aromatic C–H moieties without 
the need for a directing group, enabling orthogonal site se-
lectivity relative to the iridium catalyst (14). In contrast, the 
direct HIE at aliphatic C(sp3)–H moieties remains a challenge 
in the field (15–20). With over 50% of the top selling commer-
cial drugs containing at least one alkyl amine moiety (21), the 
development of an HIE reaction targeting α-amino C(sp3)–H 
bonds could potentially provide a general method for the iso-
topic labeling of the aliphatic positions of a drug molecule. 
Indeed, the site of the isotopic label can be of vital im-
portance depending on the nature of the study and the met-
abolic pathways of the substrate of interest (1–6). In addition, 
the inherently larger number of exchangeable hydrogens at 
α-amino C–H moieties relative to aromatic C–H moieties en-
ables high incorporation of the desired isotopic label, which 
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is often necessary for the labeled compound to be of practical 
use in pharmaceutical studies. Therefore, the development of 
a mild and efficient HIE reaction targeting α-amino C(sp3)–H 
bonds is particularly attractive for the pharmaceutical indus-
try. 

Visible light-mediated photoredox catalysis has emerged 
in recent years as an enabling platform to access new organic 
transformations through single-electron transfer events (22–
24). In particular, our laboratory and others have demon-
strated that tertiary amines can be activated via single-elec-
tron oxidation to give an amine radical cation, which can 
undergo facile α-deprotonation to yield carbon-centered α-
amino radicals. The synthetic utility of α-amino radicals has 
been showcased by its ability to couple with various electro-
philic partners (25–27). On this basis, we questioned if we 
could exploit α-amino radicals to access α-deuterated or α-
tritiated products (Fig. 1B). Specifically, we hypothesized 
that, instead of trapping the α-amino radical with a carbon 
electrophile, the use of an appropriate hydrogen atom trans-
fer (HAT) catalyst in equilibrium with D2O or T2O could facil-
itate the abstraction of deuterium or tritium to yield labeled 
products. We recognized that the choice of the HAT catalyst 
would be heavily influenced by thermodynamic factors, in 
particular the bond dissociation energy (BDE) relative to that 
of the α-amino C–H bond, as well as its pKa relative to water 
(Fig. 1B) (28–30). With these considerations in mind, we pos-
tulated that thiols, which have been demonstrated to be good 
hydrogen atom donors (31), would be suitable HAT catalysts 
for this transformation. Herein, we describe the direct HIE of 
α-amino C(sp3)–H bonds mediated by the synergistic merger 
of photoredox and HAT catalysis. This methodology was 
readily applied to the program-scale deuteration (32) and 
high specific activity tritiation of 18 representative drugs and 
drug candidates. 

A proposed mechanism for the photoredox and HAT cat-
alyzed HIE of α-amino C(sp3)–H bonds is shown in Fig. 2A 
(33). Initial photoexcitation of the iridium (III) photocatalyst 
Ir(F-Meppy)2(dtbbpy)PF6 [F-Meppy = 2-(4-fluorophenyl)-5-
(methyl)pyridine, dtbbpy = 4,4’-di-tert-butyl-2,2’-bipyridine] 
(1) would generate the long lived (τ = 1.1 μs) triplet excited 
state IrIII complex 2 (34). This species is a strong single-elec-
tron oxidant (E1/2

red [*IrIII/IrII] = +0.94 V vs. SCE in acetoni-
trile) (34) and can oxidize amine 3, which undergoes facile 
deprotonation at the α-position to give α-amino radical 4. At 
the same time, a thiol HAT catalyst (6) would undergo ex-
change with T2O to give the tritiated thiol 7, which would 
serve as the source of tritium. In addition to the reported BDE 
for typical α-amino C–H and thiol S–H bonds, we reasoned 
that HAT can proceed between the polarity matched (35) nu-
cleophilic α-amino radical 4 and tritiated thiol 7, which 
would furnish α-tritiated amine product 8 and the electro-
philic thiol radical 9 (α-amino C–H BDE = 93.0 kcal mol−1 (36) 

vs S–H BDE = 87.0 kcal mol−1 (37)). Both catalytic cycles can 
then converge to undergo a second single-electron transfer 
between 5 and 9 to regenerate photocatalyst 1 and tritiated 
thiol 7 via protonation of thiol anion 10 (E1/2

red [IrIII/IrII] = –
1.50 V vs. SCE in acetonitrile (31), E1/2

red [thiol] = –0.85 V vs. 
SCE for cysteine) (38). 

We began our investigations into the proposed isotopic 
labeling protocol by first examining the deuteration of clom-
ipramine (11) hydrochloride (Anafranil), a commercially 
available antidepressant. For the application of deuterated 
compounds as internal standards in pharmaceutical studies, 
each compound should ideally have an isotopic incorporation 
of more than 4.0 deuteriums per molecule, with less than 
0.1% of the unlabeled compound remaining, so as to avoid 
peak overlaps on the mass spectrum to allow for accurate 
quantification (11). In addition, to facilitate long term studies, 
the program-scale synthesis of a uniformly deuterated batch 
of compound is also highly desirable (Fig. 2B, left). A variety 
of photoredox catalysts and thiol catalysts, as well as their 
respective loadings were evaluated, using N-methyl-2-pyrrol-
idone (NMP) as solvent (see figs. S1 and S2). In our prelimi-
nary studies conducted at 0.1 mmol scale, we were delighted 
to observe that the use of 2 mol % of organic photocatalyst, 
4Cz-IPN (12) (4Cz-IPN = 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-di-
cyanobenzene, excited state τ = 5.1 μs, E1/2

red[*4Cz-IPN/ 4Cz 
IPN-] = +1.35 V, E1/2

red[4Cz-IPN-/ 4Cz IPN] = +1.21 V) (39) and 
30 mol % triisopropylsilanethiol 13 along with 1.2 equivalents 
of lithium carbonate afforded the corresponding deuterated 
product in 79% yield with 9.2 deuteriums incorporated per 
molecule and less than 0.1% of unlabeled compound remain-
ing. Scaling the reaction up resulted in a comparable effi-
ciency of deuterium incorporation, enabling the program-
scale synthesis of [2H]11 with 7.2 deuteriums per molecule, 
no detectable unlabeled compound remaining and an iso-
lated yield of 76% as its HCl salt (1.06 g) (Fig. 2B, left). The 
use of the sterically hindered triisopropylsilanethiol was crit-
ical to prevent a deleterious thiol-substrate coupling pathway 
(see fig. S2). Control experiments also revealed that, light, 
photoredox catalyst, and thiol are all essential for deuteration 
to proceed (see table S1). 

Next, we sought to extend this HIE protocol to the high 
specific activity tritiation of amine-containing drugs with 
T2O. In contrast to the deuterium HIE reactions, the analo-
gous tritium HIE reactions are predominantly run on mi-
cromolar scale as i) the tritium isotope is easily detectable 
and only a small amount of radioactive product is required, 
and ii) safety and cost concerns favor limiting the amount of 
tritium used to 1.0 Ci (17.2 μmol) per reaction. An additional 
complication is that commercially available T2O is typically 
highly diluted with natural abundance H2O to prevent the de-
composition of T2O via autoradiolysis (Fig. 2C) (3). To over-
come this issue, we set out to establish a convenient process 
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to synthesize high specific activity T2O using only 1 Ci of T2 
gas, which could be performed in a common laboratory set-
ting and used immediately in our tritium HIE reaction. In-
dustrially, neat T2O is produced in bulk from the reaction 
between T2 and PtO2 before being distilled and diluted (40). 
To facilitate the transfer of micromolar scale T2O into our 
photoredox reaction mixture, we proposed to adapt this pro-
cedure for the generation of T2O in a potential reaction sol-
vent. Among the solvents evaluated, we were pleased to 
observe that the use of NMP as the reaction solvent enabled 
the formation of high specific activity tritiated water in 61% 
yield (0.51 Ci, 8.8 μmol) from 1.0 Ci T2 gas and PtO2 (see fig. 
S3). 

With this convenient method to access T2O in hand, we 
proceeded to optimize the proposed photoredox-HAT cata-
lyzed tritium labeling protocol. In general, high specific ac-
tivity tritium labeled compounds are required to have a 
specific activity of at least 15 Ci mmol−1 (equivalent to an in-
corporation of 0.5 tritiums per molecule), and are isolated in 
an appreciable radiochemical yield of at least 10 mCi (Fig. 2B, 
right). Under the dilute micromolar conditions (using ap-
proximately 4.4 equivalents of T2O), we observed that the use 
of 11 in its free base form, along with increased loadings of 
the photoredox (4 mol %) and thiol (60 mol %) catalysts, and 
the use of the integrated photoreactor developed at Merck & 
Co., Inc. (41) as the visible light source greatly enhanced the 
incorporation of tritium, yielding [3H]11 with a high specific 
activity of 40.2 Ci mmol−1 and isolated yield of 39.8 mCi (Fig. 
2B, right). 

With the above optimized conditions in hand, we explored 
the generality of the photoredox-mediated deuteration and 
tritiation protocols with a library of commercially available 
drugs containing a variety of alkyl amine scaffolds. For the 
deuteration of these substrates (Fig. 3), the best conditions 
were found to be substrate dependent, given a choice of two 
photocatalysts, Ir(F-Meppy)2(dtbbpy)PF6 (1) and 4-CzIPN 
(12), two thiols (13 and 14) and two light sources, a 34 W 
blue LED or the integrated photoreactor (see the supplemen-
tary materials). Acyclic trialkyl amines ([2H]15–[2H]17) 
worked well, as did piperidine ([2H]18, [2H]19) and piper-
azine rings ([2H]20–[2H]24). The reaction also showed 
good tolerance for a variety of functional groups. Aryl fluo-
ride ([2H]16) and aryl chloride ([2H]18, [2H]22) substitu-
ents were well tolerated under the reaction conditions. 
Carboxylic acid ([2H]21), ester ([2H]17), amide ([2H]20, 
[2H]22, [2H]24) and nitrile ([2H]15, [2H]16) functionali-
ties were also amenable to the photoredox conditions, as were 
free hydroxyl groups ([2H]23, [2H]25, [2H]26). In addi-
tion, chiral centers away from the reactive sites were unper-
turbed during the reaction ([2H]16, [2H]17, [2H]21). Our 
deuteration protocol was also applicable to macrolide drugs 
like azithromycin ([2H]25) and clarithromycin ([2H]26). 

These high molecular weight macrocycles with no C(sp2)–H 
bonds are particularly challenging substrates for HIE via con-
ventional transition metal catalysis. The preparation of deu-
terated azithromycin would have previously involved a multi-
step sequence and the use of costly deuterated reagents (42). 
In contrast, our photoredox protocol enables access to 
[2H]25 in a single step using D2O, a readily available source 
of deuterium. Remarkably, stereochemistry was retained 
even when H/D exchange occurred at chiral centers on these 
macrocycles, likely due to substrate control in the HAT pro-
cess. In addition to α-amino positions, benzylic and β-amino 
positions were also deuterated in certain instances ([2H]15, 
[2H]16, [2H]18, [2H]22), see figs. S4 and S5). In summary, 
all substrates gave excellent deuterium incorporations on 
program-scale, with incorporations of more than 5.0 deuteri-
ums per molecule, and importantly, less than 0.1% of the un-
labeled compound, meeting the minimum requirement for 
their use as internal standards. 

With the same library of 13 pharmaceutical drugs, we 
were able to demonstrate similar functional group tolerance 
for the photoredox-mediated tritium HIE protocol (Fig. 4). As 
with the deuteration reaction, the best conditions were sub-
strate dependent, and combinations of the two photocata-
lysts, 1 and 12, and the two thiols, triisopropylsilanethiol (13) 
and methyl thioglycolate (14) were used. Despite the smaller 
excess of T2O in the reaction, the presence of acidic hydrogens 
from carbamate ([3H]19), amide ([3H]22, [3H]24), carbox-
ylic acid ([3H]21) and alcohol ([3H]23, [3H]25, [3H]26) 
functionalities did not have a major impact on tritium incor-
poration. Again, we were pleased to see high tritium incorpo-
rations with the high molecular weight macrocycles 
azithromycin ([3H]25) and clarithromycin ([3H]26), as 
these substrates have no aromatic rings and cannot be triti-
ated using existing HIE protocols. For [3H]22, when the 
amount of T2 gas used was increased to 2 Ci, specific activity 
was boosted from 11.5 to 14.6 Ci mmol−1, with a large increase 
in yield (8.6 mCi to 19.6 mCi), demonstrating the tunability 
of our protocol with respect to the amount of T2 used, ena-
bling single step tritiation even for particularly recalcitrant 
substrates. We were delighted to achieve high specific activi-
ties for all substrates, meeting the typical standards for the 
preparation of high specific activity pharmaceutical drugs in 
appreciable yield for their use in ligand binding studies. 

In addition to the library of commercially available drug 
molecules, we further evaluated the utility of this photore-
dox-catalyzed tritiation with a series of potential GPR40 ago-
PAMs (Fig. 4) developed in the research laboratories of Merck 
& Co., Inc. (43). The characterization of GPCR allostery is crit-
ical to advancing this agoPAM chemical class. Augmentation 
of binding in the presence of orthosteric ligands has been pre-
viously demonstrated using radiolabeled analogs in radiolig-
and binding assays, and subsequently visualized in the GPR-
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40 ternary crystal structure (44). As such, we envision that 
the radiolabeling methodology described herein might be 
used to enable metabolite identification both in vitro and in 
vivo, as well as the elucidation of the extent of covalent pro-
tein binding in human hepatocytes to derisk any bioactiva-
tion toward reactive electrophiles (45). 

Initially, photoredox-mediated decarboxylation of the ali-
phatic carboxylic acid moiety in the drug candidates was ob-
served. However, this was overcome by using a less oxidizing 
photocatalyst, Ir(ppy)2(dtbbpy)PF6 (E1/2

red [*IrIII/IrII] = +0.66 
V vs. SCE in acetonitrile) (34) or a Lewis acid additive (see 
the supplementary materials). We were also pleased to ob-
serve that sterically hindered amines ([3H]27 and [3H]28) 
and azetidine rings ([3H]29) were also amenable substrates 
for this protocol. Tritiation was also observed at a C(sp2)–H 
moiety in [3H]27, possibly due to conjugation of the benzylic 
α-amino radical. For [3H]31, epimerization likely occurred 
at the chiral center adjacent to nitrogen as a result of the in-
troduction of tritium (46). All 5 compounds were satisfacto-
rily labeled and met the requirements for use in preclinical 
candidate selection studies. 

We anticipate that the facile access to highly deuterated 
and tritiated compounds based on the method described 
herein will enable accelerated and broader interrogation of 
the biological activity of molecules in the pursuit of the de-
velopment of new molecular therapies. 
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Fig. 1. Photoredox-catalyzed deuteration and tritiation of 
pharmaceutical compounds. (A) The merger of photoredox and hydrogen 
atom transfer (HAT) catalysis enables α-amino C(sp3)–H selective HIE of 
alkylamine-based drugs. (B) Hypothesis for the proposed photoredox-
catalyzed deuteration and tritiation. 
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Fig. 2. Reaction development. (A) Proposed catalytic cycle for the photoredox-catalyzed HAT 
protocol is shown. SET, single-electron transfer; HAT, hydrogen atom transfer; LED, light-emitting 
diode. (B) Procedures and requirements for program-scale deuteration and high specific activity 
tritiation. The colored dots (maroon or green) and numbers denote the positions of the C–H bonds that 
are labeled and the % incorporation of the hydrogen isotope, respectively. NMP, N-methyl-2-
pyrrolidone; rt, room temperature (C) High specific activity T2O is accessible from T2 and PtO2 at 
micromolar scale and can be used for photoredox-catalyzed tritiation in a one-pot procedure.  
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Fig. 3. Scope of program-scale deuteration. Reaction conditions: photoredox catalyst 1 or 12 (2 mol %), 
triisopropylsilanethiol 13 (30 mol %), D2O (50 equiv.), Li2CO3 (1.2 equiv., added when substrate is used as its 
acid salt) NMP, room temperature, 34W blue LED or integrated photoreactor. The products were isolated as 
the appropriate acid salts shown in the parentheses. Ac, acetyl group. *The two protons at the α-amino 
methylene position are diastereotopic and are labeled to different extents. 
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Fig. 4. Scope of high specific activity tritiation. Reaction conditions: substrate (2 μmol), photoredox 
catalyst 1 or 12 (4 mol %), thiol catalyst 13 or 14 (60 mol %), T2O (preformed from 1Ci T2 and PtO2), NMP, 
room temperature, 34W blue LED or integrated photoreactor. tBu, tert-butyl group. ‡Incorporation depicted 
is for the 2 Ci reaction with [3H]22. 
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