Comparative Syntheses of Vancomycin

lan Mangion MacMillan Group Meeting September 28, 2005

Dave Evans, Harvard 1998

K.C. Nicolaou, Scripps 1998, 1999

Dale Boger, Scripps 1999

Structural Features of Vancomycin Type Glycopeptide Antibiotics

Generally characterized by an aryl-rich polypeptide backbone with varying crosslinking and glycosidation patterns

X = Y = CI; Vancomycin X = H, Y = CI; Eremomycin X = Y = H; Orienticin C

Useful references

Hubbard, B. K.; Walsh, C. T. Angew. Chem. Int. Ed., 2003, 42, 730

Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C. Chem. Rev., 2005, 105, 425

Evans, D.; Wood, M. R.; rotter, W.; Richardson, T. I.; Barrow, J. C.; Katz, J. L. Angew. Chem. Int. Ed., 1998, 37, 2700

Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Winsigger, N.; Hughes, R.; Bando, T. Angew. Chem. Int. Ed., 1999, 38, 240

Boger, D. L.; Miyazaki, S.; Kim, S. H.; Wu, J. H.; Castle, S. L.; Loiseleur, O.; Jin, Q. J. Am. Chem. Soc., 1999, 121, 10004

Proposed Biosynthesis of Vancomycin-Type Glycopeptides

Remarkably, genes and proteins responsible for the biosynthesis of these molecules have been characterized
Biosynthesis can be reduced to peptide elongation and post-translational modification

The challenge to the synthetic chemist is immense: biosynthesis entails 35 total steps

Biological Activity (Gram-Positive Bacteria)

Vancomycin inhibits cell wall cross-linking through tight binding, eventually leading to cell lysis

Alanine dimer - normally linked to glycan outer wall of cell

(resistance)

Disruption of just one of the five hydrogen bonds leads to a 1000-fold loss in activity

The Evans Design

Chiral auxiliary technology will be used to create most amino acid stereocenters

This strategy relies on atropdiastereoselective macrocyclizations

Oxazolidinone-Based Amino Acid Synthesis

Chiral auxiliary approach creates labile arylglycine stereocenters in controlled fashion

This strategy is applied to all arylglycines in the Evans synthesis

Evans, JACS, 4011, 1990

Oxazolidinone-Based Amino Acid Synthesis

The auxiliary approach proves unsuccessful for the central resorcinol-type arylglycine

Oxazolidinone methodology is employed to stereoselectively access a protected amino alcohol

Functional group adjustment and amino acid coupling

82% yield

Oxidative coupling provides undesired atropisomer

65% yield, 19:1 dr

Vanadium serves as oxidant, BF₃ as trap for oxygen nucleophiles, silver as trap for chloride ion impurities, TFA as part of solvent mixture, NaBH(OAc)₃ as reductive quench

see: Evans, JACS, 6426 1993

Oxidative coupling proceeds via radical cation

Careful coupling introduces the central aryl fragment

Me

Mé

Macrocyclization occurs with good selectivity

62% yield 5:1 dr

(10:1 dr w/o Cl)

Thermal equilibration provides the desired atropisomer

44% yield 19:1 dr

see: Evans, *JACS*, 6426 **1993**

Thermal equilibration provides the desired atropisomer

65% yield

Synthesis of the Right Macrocycle

Synthesis of the Right Macrocycle

Closure of the second macrocycle proceeds with the desired atropdiastereoselectivity

60% yield 5:1 dr

Synthesis of the Right Macrocycle

Closure of the second macrocycle proceeds with the desired atropdiastereoselectivity

An unusual mild deprotection reveals a carboxylic acid

68% yield

Nitrosation in the presence of seven amide functionalities

62% yield

Completion of vancomycin aglycon in 40 linear steps

Evans, Wood, Trotter, Richardson, Barrow, Katz ACIEE, 1998, 2700

The Nicolaou Design

Sharpless asymmetric catalysis will be used to create most amino acid stereocenters

Atropdiastereoselctivity left unaddressed in the design

Dihydroxylation/Aminohydroxylation Based Approach

Sharpless methodology used to create aryl amino acid stereocenters

Enantioenrichment attained through amino acid coupling

Dihydroxylation/Aminohydroxylation Based Approach

As in the Evans synthesis, creating the central fragment is challenging

Nicolaou's Triazene-Driven Ether Synthesis

Triazene serves to activate aryl ring for S_NAr and acts as functional handle for phenol

Nicolaou, JACS, 119, 1997, 3421

Approach to the Left Macrocycle

Peptide coupling sets up biaryl ether synthesis

Closure of the Left Macrocycle

Ether formation proceeds without atropdiastereoselectivity

Amide Formation and Deprotection

Completion of the left half achieved via lactamization

For synthesis of tripeptide, see Nicolaou Classics II, p. 268

Triazene-activated ether formation favors unnatural atropisomer; thermal equilibration is possible

Heating unnatural isomer at 140 °C provides 2:3 mix in 80-85% yield

74% yield 1:3 dr

32% yield

Phenol protection and introduction of methyl ester

74% yield

Completion of the Natural Product

Desilylation is followed by global deprotection

62% yield

Nicolaou, Takayanagi, Jain, Natarajan, Koumbis, Bando, Ramanjulu, ACIEE, 1998, 2717

Conclusions

While synthesis is not an issue in the supply of Vancomycin, fascinating chemistry has been discovered in pursuit of an expedient synthesis

Evans - 36 steps 0.2% overall yield 84% average

Nicolaou - 36 steps 0.13% overall yield 82% average

Control over the wide variety of stereocenters in the context of a complex synthesis is most notable