

Literature Talk November 1st, 2024

ona Mathis McWhinnie MacMillan Group Princeton University

Fragrance Chemistry

Organic Synthesis in Society

Organic Synthesis in Society

Organic Synthesis in Society

Cleaning Products \$255.7 Billion

Personal Hygiene & Grooming \$592.6 Billion

7	ħe	0
	ne	O

Natural Fragrances

Fragrance Discovery

Conclusion and Outlook

Outline

Difactory Sense

Synthetic Fragrances

• Vanillin

• (–)-Ambrox

• (–)- β -Santalol

• Discovery of Nympheal

Importance of Olfaction

Sell, Charles S. Fundamentals of fragrance chemistry. John Wiley & Sons, 2019. Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

The Olfactory Sense

Requirements for an odorant

Sell, Charles S. Fundamentals of fragrance chemistry. John Wiley & Sons, 2019. Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

The Olfactory Sense

Requirements for an odorant

Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Curr Neuropharmacol 2019, 17 (9), 891-911.

Buck L. and Axel R. *Cell*. **1991**, **65**(1),175-187. https://www.nobelprize.org/prizes/medicine/2004/press-release/

Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Curr Neuropharmacol 2019, 17 (9), 891-911.

Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Curr Neuropharmacol 2019, 17 (9), 891-911.

Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Curr Neuropharmacol 2019, 17 (9), 891-911.

Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Curr Neuropharmacol 2019, 17 (9), 891-911.

Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Curr Neuropharmacol 2019, 17 (9), 891-911.

Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Curr Neuropharmacol 2019, 17 (9), 891-911.

The Olfactory Sense

Taste Buds

Trigeminal Nerve

Natural Sources

Fragrance Ingredients

Fragrance Discovery

Natural Sources

Fragrance Ingredients

Synthesis

Fragrance Discovery

Oil Expression

Dry Distillation

Natural Sources

Steam Distillation

Solvent Extraction

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Oil Expression

- Physical pressure applied to produce expressed oil
- Commercial citrus oils

Oil Expression

Dry Distillation

- Heat applied directly to plant material
- Usually reserved for high boiling point wood oils

Essential oil

Heat

Steam Distillation

- Water or steam added to material, codistilled with oil
- Minimal degradation due to temperature ceiling

- Essential oil
- Aromatic distilled water

Solvent Extraction

- most important extraction method
- produces an absolute (residual solvent may be present)

Plant material

Fractional distillation

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Essential Oil Analysis

GC–MS

GC-Sniffing

GC-Olfactometry or GC-Sniffing

- Column effluent split between detector and smelling port
- Human nose can be more sensitive to certain materials than some detectors

Sell, Charles S. Fundamentals of fragrance chemistry. John Wiley & Sons, 2019. Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Headspace Analysis

Headspace: air above or around a fragrant substance that contains volatile compounds

Natural Sources

Fragrance Ingredients

Synthesis

Fragrance Discovery

Why Make Synthetic Fragrances?

- unfavorable carbon footprints
- Low yielding and unsustainable land and water usage

- Significant material burden; not atom economical
- Manual labor costs for growing and harvesting

Sell, Charles S. *Fundamentals of fragrance chemistry*. John Wiley & Sons, 2019. Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Cost

Security of Supply

- Limited availability for plants growing in select regions
- Supply dependent on weather and affected by natural disasters

Why Make Synthetic Fragrances?

Sustainability

"Natural isn't always better"

Sell, Charles S. *Fundamentals of fragrance chemistry*. John Wiley & Sons, 2019. Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Cost

Security of Supply

Vanillin

Vanilla planifolia

Native to the tropical forests of Mexico, Central and and northern south Africa

Dried, cured, and extracted for the production of vanilla extract

From Vanilla to Vanillin

Vanilla Pods (1.7-2.8% vanillin)

Vanillin

First isolated in 1858 by Théodore Nicolas Goblet

Wilhelm Haarmann 1847–1931

Haarmann & Reimer

First Route for the Industrial Production of Vanillin

Minimal cost benefits

70-95% in clove oil Easily isolated by distillation

Produced on an Industrial Scale

Haarmann–Reimer Collaboration – 1876

1. $K_2Cr_2O_7$ H_2SO_4 2. KOH (aq) 3. H_2SO_4

eugenyl acetate

vanillin

Abundant starting material

Chromium

Modern Routes

Rhône-Poulenc (now Solvay)

Solvay

Schaefer, Bernd. Natural products in the chemical industry. Vol. 831. Heidelberg: Springer, 2014.

D'Arrigo, P.; Rossato, L. A. M.; Serra, S. *Molecules*. **2024**, *29*(2), 442.

undesired waste material in paper and pulp industry

D'Arrigo, P.; Rossato, L. A. M..; Serra, S. *Molecules*. **2024**, *29*(2), 442.

Modern Syntheses of Vanillin – Lignin

D'Arrigo, P.; Rossato, L. A. M.; Serra, S. *Molecules*. **2024**, *29*(2), 442.

Enzymatic Productions

The Rhodia Process

Lee, E.G.; Yoon, S.H.; Das, A.; Lee, S.H.; Li, C.; Kim, J.Y.; Choi, M. S.; Oh, E. K.; Kim, S. W. Biotechnol Bioeng. 2009, 102(1), 200. Furuya, T.; Miura, M.; Kuroiwa, M.; Kino, K. New Biotechnology. 2015, 32(3), 335.

(–)-Ambrox

Sperm Whale (*Physeter macrocephalus*)

Elterlein, F.; Bugdahn, N.; Kraft, P. Chem. Eur. J. 2024, 30, e202400006.

Ambergris to Ambrox

Digestive Tract Injuries

Ambergris – "floating gold" up to \$40,000 per kg

Max Stoll 1899–1969

ambergris tincture

Ambergris to Ambrox

ambreine (odorless) 25-45% in ambergris

Max Stoll 1899–1969

ambergris tincture

Ambergris to Ambrox

ambreine (odorless) 25-45% in ambergris (–)-Ambrox (smelling principle) trace in ambergris

Max Stoll 1899–1969

ambergris tincture

Ambergris to Ambrox

ambreine (odorless) 25-45% in ambergris (–)-Ambrox (smelling principle) trace in ambergris

(-)-sclareol

allylic oxidation (Cr(VI), KMnO₄, Ozone)

Clary Sage (*Salvia sclarea*)

Ambergris to Ambrox: initial route

Clary Sage (*Salvia sclarea*)

Ambergris to Ambrox: initial route

Biosynthesis of (–)-Sclareodiol

(–)-sclareol

Cytotoxic to many cells Hard to obtain commercially

Hyphozyma roseonigra

Ncube, E.N.; Steenkamp, P.A.; van der Westhuyzen, C.W.; Steenkamp, L.H.; Dubery, I.A. Catalysts 2022, 12, 55.

Biosynthesis of (–)-Sclareol

from S. sclarea

geranylgeranyl diphosphate (GGPP)

labdadienyl diphosphate (LDPP)

sclareol synthase (SsScS) from S. sclarea

- minimal toxicity to E. coli host
- heterologous enzyme expression

Biosynthesis of (–)-Sclareol

Me

dsm-firmenich

Schalk, M.; Pastore, L.; Mirata, M.A.; Khim, S.; Schouwey, M.; Deguerry, F.; Pineda, V.; Rocci, L.; Daviet, L. 2012. J. Am. Chem. Soc. 134(46), 18900

Ĥ

geranylgeranyl diphosphate (GGPP)

labdadienyl diphosphate (LDPP)

(–)-Ambrox \$150/kg production value

Biosynthesis of (–)-Ambrox

Eichhorn, E., & Schroeder, F. Journal of Agricultural and Food Chemistry, 2023, 71(13), 5042-5052.

Biosynthesis of (–)-Ambrox

Eichhorn, E., & Schroeder, F. Journal of Agricultural and Food Chemistry, 2023, 71(13), 5042-5052.

(–)-β-Santalol

Steam Distillation

East Indian Sandalwood (Santalum album)

Sandalwood to (–)-β-Santalol

Sandalwood oil (5-7% yield) \$3000-8000 per L

https://www.acs.org/molecule-of-the-week/archive/s/santalols.html

Steam Distillation

East Indian Sandalwood (*Santalum album*)

Sandalwood to (-)- β -Santalol

Sandalwood oil (5-7% yield) \$3000-8000 per L

a-santalol (41-55%)

(–)-β-santalol (16-24%)

Sandalwood to (–)-β-Santalol – First Asymmetric Synthesis

Schalk, M.; Pastore, L.; Mirata, M. A.; Khim, S.; Schouwey, M.; Deguerry, F.; Pineda, V.; Rocci, L.; Daviet, L.: Journal of the American Chemical Society 2012, 134 (46), 18900-18903

Sandalwood to (–)-β-Santalol – First Asymmetric Synthesis

Schalk, M.; Pastore, L.; Mirata, M. A.; Khim, S.; Schouwey, M.; Deguerry, F.; Pineda, V.; Rocci, L.; Daviet, L.: Journal of the American Chemical Society 2012, 134 (46), 18900-18903

Sandalwood to (–)-β-Santalol – First Asymmetric Synthesis

(*–*)-*β*-Santalol 97% ee, Z/E 97:3 after low temp pentane recrystallization

50%

Schalk, M.; Pastore, L.; Mirata, M. A.; Khim, S.; Schouwey, M.; Deguerry, F.; Pineda, V.; Rocci, L.; Daviet, L.: Journal of the American Chemical Society 2012, 134 (46), 18900-18903

Sandalwood to β-Santalol – Industrial Route

69% (98:2 endo/exo) (*E*,*E*/*E*,*Z* 35:1)

Fehr, C.; Magpantay, I.; Vuagnoux, M.; Dupau, P. *Chemistry – A European Journal* **2011**, *17* (4), 1257-1260.

Sandalwood to β-Santalol – Industrial Route

santene

Fehr, C.; Magpantay, I.; Vuagnoux, M.; Dupau, P. *Chemistry – A European Journal* **2011**, *17* (4), 1257-1260.

Sandalwood to β-Santalol – Industrial Route

santene

rac-β-Santalol exo:endo 98:2 *E/Z* 98:2 cat NaOMe, MeOH

86%

Fehr, C.; Magpantay, I.; Vuagnoux, M.; Dupau, P. *Chemistry – A European Journal* **2011**, *17*(4), 1257-1260.

Sandalwood to β-Santalol – Biosynthetic Route

Jörg Bohlmann University of British Columbia

> Jones, C. G.; Moniodis, J.; Zulak, K. G.; Scaffidi, A.; Plummer, J. A.; Ghisalberti, E. L.; Barbour, E. L.; Bohlmann, J. Journal of Biological Chemistry 2011, 286 (20), 17445-17454. Jones, C. G.; Keeling, C. I.; Ghisalberti, E. L.; Barbour, E. L.; Plummer, J. A.; Bohlmann, J., Archives of Biochemistry and Biophysics 2008, 477 (1), 121-130.
Sandalwood to β-Santalol – Biosynthetic Route

Jörg Bohlmann University of British Columbia

East Indian Sandalwood (Santalum album)

New Caledonia Sandalwood (Santalum austrocaledonicum)

Austrailian Sandalwood (Santalum spicatum)

Jones, C. G.; Moniodis, J.; Zulak, K. G.; Scaffidi, A.; Plummer, J. A.; Ghisalberti, E. L.; Barbour, E. L.; Bohlmann, J. Journal of Biological Chemistry 2011, 286 (20), 17445-17454. Jones, C. G.; Keeling, C. I.; Ghisalberti, E. L.; Barbour, E. L.; Plummer, J. A.; Bohlmann, J., Archives of Biochemistry and Biophysics 2008, 477 (1), 121-130.

farnesyl pyrophosphate

(-)- β -Santalol

Cloned and characterized \bullet three orthogolous terpene synthases

,Me

Sandalwood to β-Santalol – Biosynthetic Route

Jörg Bohlmann University of British Columbia

East Indian Sandalwood (Santalum album)

New Caledonia Sandalwood (Santalum austrocaledonicum)

Austrailian Sandalwood (Santalum spicatum)

Jones, C. G.; Moniodis, J.; Zulak, K. G.; Scaffidi, A.; Plummer, J. A.; Ghisalberti, E. L.; Barbour, E. L.; Bohlmann, J. Journal of Biological Chemistry 2011, 286 (20), 17445-17454. Jones, C. G.; Keeling, C. I.; Ghisalberti, E. L.; Barbour, E. L.; Plummer, J. A.; Bohlmann, J., Archives of Biochemistry and Biophysics 2008, 477 (1), 121-130.

farnesyl pyrophosphate

Cloned and characterized \bullet three orthogolous terpene synthases

Sandalwood to β -Santalol – Biosynthetic Route

E. coli or S. cerevisiae

Co expressed genes coding for:

- Farnesyl pyrophosphate synthase
- Santalene synthase
- P450 santalene oxidase
- P450 reductase

M. Schalk, A. Taglieber, L. Daviet, Perfum. Flavor. 2020, 45 (May), 38-44

Fragrance Ingredients

Synthesis

Fragrance Discovery

Fragrance Discovery

Major Players in Fragrance Production

dsm-firmenich

Switzerland & Netherlands

Clichy, France

Switzerland

England, UK

Procter & Gamble OH, USA

NY, USA

Fragrance Discovery

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

• Ability of odor to stick to hair or fabric

Persistence/Tenacity

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Odor Characteristics

• Dependent upon volatility and log(P)

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Odor Characteristics

- Lowest concentration at which odor can be perceived
- Less material required, lower costs

Threshold

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Odor Characteristics

Threshold

Impact

- Subjective phenomenon
- Intensity of perceived sensation

Radiance

space

• Requires low recognition threshold

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Odor Characteristics

Threshold

Impact

• The ability of a fragrance to fill a

Radiance

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Odor Characteristics

Threshold

Bloom

- The ability of a fragrance to perfume a room when introduced as a solid
- Relevant for soap fragrances

Radiance

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Odor Characteristics

Threshold

Impact

Trail

Bloom

Random Screening

Mechanism of Action

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Strategies for Novel Fragrance Design

Statistical Design

Strategies for Novel Fragrance Design

Random Screening

Mechanism of Action

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Statistical Design

Random Screening

Random Screening

Lilial

hydroxycitronellal

Anselmi, C.; Centini, M.; Mariani, M.; Sega, A.; Pelosi, P. Journal of Agricultural and Food Chemistry 1992, 40 (5), 853-856.

Random Screening

Random Screening

Lilial

hydroxycitronellal

Anselmi, C.; Centini, M.; Mariani, M.; Sega, A.; Pelosi, P. Journal of Agricultural and Food Chemistry 1992, 40 (5), 853-856.

Random Screening

Random Screening

Anselmi, C.; Centini, M.; Mariani, M.; Sega, A.; Pelosi, P. Journal of Agricultural and Food Chemistry 1992, 40 (5), 853-856.

Random Screening

Random Screening

Anselmi, C.; Centini, M.; Mariani, M.; Sega, A.; Pelosi, P. Journal of Agricultural and Food Chemistry 1992, 40 (5), 853-856.

Strategies for Novel Fragrance Design

Random Screening

Mechanism of Action

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Statistical Design

Mechanism of Action

Odorant Promiscuity

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Mechanism of Action

Binding Site Promiscuity

Intensity

Odorant Promiscuity

Binding Site Promiscuity

Intensity

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Mechanism of Action

Strategies for Novel Fragrance Design

Random Screening

Mechanism of Action

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Statistical Design

log(activity) = f(electronic) + f(steric) + f(log P)

The Hansch Approach

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Statistical Design

Pattern Recognition

Olfactophores

Physical Features

Corwin Hansch (1918-2011)

log(activity) = f(electronic) + *f*(steric) + *f*(log *P*)

Odor Properties

The Hansch Approach

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Odor correlated with boiling point and log(P)

Greenberg, M. J. Journal of Agricultural and Food Chemistry 1979, 27 (2), 347-352. Boelens, H. Trends in Pharmacological Sciences. 1983, 4, 421-426.

The Hansch Approach

Odor intensity correlated with log(P) and hydrogen bonding

$$log(1/c) = -0.38 + (0.19)(log P)^2 + 2.12 \pm (0.74) log P + 1.18(0.48)HB - 5.23 \pm (0.45) \\ n = 50, r^2 = 0.80, SD = 1.17$$

large number of compounds with structural diversity

Molecular Descriptors

topological geometrical electronic physicochemical

Automated Data Analysis using Pattern recognition Techniques

Pattern Recognition

Molecular Classes

Threshold

Quantitative *or* Qualitative

Fragrance Classes

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Threshold

 $\log C = \log of concentration$ to produce odor equivalent to 87 ppm 1-butanol in air

Pattern Recognition

Model developed

Edwards, P.A. and Jurs, P.C. Jurs, Chem. Senses. 1989, 14(2), 281.

Pattern Recognition

Descriptor	Coefficient (error)
log mol wt.	-7.02 (0.82)
charge on most negative atom	+3.93 (0.65)
polarity parameter (Δ)	+1.64 (0.32)
measure of unsaturation	-0.53 (0.14)
average distance sum connectivity	-0.74 (0.28)

Edwards, P.A. and Jurs, P.C. Jurs, *Chem. Senses.* **1989**, *14*(2), 281.

Olfactophores

olfactophore (or osmophore): 3-dimensional arrangement of chemical features in a molecule that is responsible for its olfactory activity

Sell, C. S., *Chemistry of Fragrances*. The Royal Society of Chemistry: 2006.

Sandalwood Oil

Active Analogue Approach: assume a common conformation among an active series is responsible for odor

Buchbauer, G.; Hillisch, A.; Mraz, K.; Wolschann, P. Helvetica Chimica Acta 1994, 77 (8), 2286-2296.

Olfactophores

(–)-β-Santalol principle smelling component

Sandalwood odor molecules

Buchbauer, G.; Hillisch, A.; Mraz, K.; Wolschann, P. Helvetica Chimica Acta 1994, 77 (8), 2286-2296.

G

Sandalwood odor molecules

G

Buchbauer, G.; Hillisch, A.; Mraz, K.; Wolschann, P. Helvetica Chimica Acta 1994, 77 (8), 2286-2296.

Olfactophores

E-L overlay

P2

P1

A-I overlay

Buchbauer, G.; Hillisch, A.; Mraz, K.; Wolschann, P. Helvetica Chimica Acta 1994, 77 (8), 2286-2296.

Odorless molecules

Olfactophores

Buchbauer, G.; Hillisch, A.; Mraz, K.; Wolschann, P. Helvetica Chimica Acta 1994, 77 (8), 2286-2296.

Sandalwood Odor

G

Odorless molecules

d

e

Olfactophores

Me

Overlay of Odor and Odorless Compounds

purple bulks represent deviations of odorless compounds

Lily of the Valley (Convallaria majalis)

Goeke, A.; Kraft, P.; Lelievre, D.; Alchenberger, A. Perfum. Flavor 2018, 43, 25-40.

The Discovery of Nympheal

Nympheal[™] — Floral and Muguet scent by Givaudan

Lily of the Valley (Convallaria majalis)

The Discovery of Nympheal

- Very delicate odor mixture
- No commercial essential oil exists
- Even CO₂ (I) extraction destroys odor
- No principle natural odorant exists

The First Synthetic Muguet Oil

HO

"Synthetic muguet oil" 1902 by Haarmann&Reimer

farnesol (20)

geranoil or geranium oil (50)

cinnamic alcohol (30)

a-ionone (2)

benzaldehyde (1)

hydroxycitronellal th 4.8 ng/L air (1905)

Goeke, A.; Kraft, P.; Lelievre, D.; Alchenberger, A. Perfum. Flavor 2018, 43, 25-40.

The Discovery of Nympheal

cyclamen aldehyde ("Aldehyde B") th 2.5 ng/L air (1919)

Lilial th 0.45 ng/L air (1956)

potential reprotoxin

The Discovery of Nympheal – Goals

1. olfactory properties to be close as possible to Lilial

2. molecule should be free of structural elements that could cause reprotoxictly issues

Goeke, A.; Kraft, P.; Lelievre, D.; Alchenberger, A. Perfum. Flavor 2018, 43, 25-40.

Lilial Degradation Pathway

Goeke, A.; Kraft, P.; Lelievre, D.; Alchenberger, A. Perfum. Flavor 2018, 43, 25-40.

╋

p-alkyl-phenylpropanals

rat hepatocyte suspension

Laue, H.; Kern, S.; Badertscher, R. P.; Ellis, G.; Natsch, A. Toxicological Sciences 2017, 160 (2), 244-255.

Degradation Assay

minor metabolite

+

╋

p-alkyl-phenylpropanals

rat hepatocyte suspension

p-alkyl-phenylpropanals

plated rat hepatocytes

Laue, H.; Kern, S.; Badertscher, R. P.; Ellis, G.; Natsch, A.. Toxicological Sciences 2017, 160 (2), 244-255.

Degradation Assay

major metabolite potential spermatotoxin minor metabolite

Degradation Assay

+

+

p-alkyl-phenylpropanals

p-alkyl-phenylpropanals

p-alkyl-phenylpropanals oral dose: ≥25 mg/kg bw/d

rat hepatocyte suspension

plated rat hepatocytes

Strategy I: synthesis of unexplored phenyl butanals

hepatocytes

β-oxidation

The Discovery of Nympheal

Goeke, A.; Kraft, P.; Lelievre, D.; Alchenberger, A. Perfum. Flavor 2018, 43, 25-40.

Strategy I: synthesis of unexplored phenyl butanals

Strategy II: introduction of cyclohexenyl derivatives of similar substitution

The Discovery of Nympheal

Goeke, A.; Kraft, P.; Lelievre, D.; Alchenberger, A. Perfum. Flavor 2018, 43, 25-40.

Goeke, A.; Kraft, P.; Lelievre, D.; Alchenberger, A. Perfum. Flavor 2018, 43, 25-40.

Nympheal

The Discovery of Nympheal

Nympheal

No reproductive toxicity

"Magic Methyl Effect"

Goeke, A.; Kraft, P.; Lelievre, D.; Alchenberger, A. Perfum. Flavor 2018, 43, 25-40.

The Discovery of Nympheal

Nympheal

Lily of the Valley

Mimosal

Nympheal

Olfactophores

Conclusion & Outlook

Sustainability

Biodegradability

Elterlein, F.; Bugdahn, N.; Kraft, P. Chem. Eur. J. 2024, 30, e202400006.

Renewability

Conclusion & Outlook

Sustainability

Biodegradability

Renewability

Machine Learning

Biotechnology

Natural Sources

Questions?

Synthesis

Fragrance Discovery