MacMillan Group Meeting Joe Carpenter February 18, 2009

Presentation outline

- Introduction to pyrroloindolines
- Methods to construct the pyrroloindoline core
 - Biomimetic approach
 - i. Raceimc methods
 - ii. Synthesis from chiral pool
 - iii. Enantioselective synthesis

• "Oxoindole" approach

- i. Raceimc methods
- ii. Synthesis from chiral pool
- iii. Enantioselective synthesis

• Other methods

- i. Raceimc methods
- ii. Synthesis from chiral pool
- iii. Enantioselective synthesis

Conclusions

Diverse biological activity of pyrroloindolines

Pyrroloindolines are isolated from amphibians, marine organisms and plant sources

Substitution pattern around central pyrroloindoline varies greatly

flustramines and pseudophyrnamines

calabar alkaloids esermethole R = Me physostigmine R = CONMe phenserine R = CONPh

calycanthaceous alkaloids chimonanthine R = H

ardeemins and amauromine

echitamine alkaloids echitamine vincorine

Biomimetic Approach

Perceived to arise via electrophilic attack at indole C-3 position of tryptophan or tryptamine

tryptamine

Biomimetic Approach

Perceived to arise via electrophilic attack at indole C-3 position of tryptophan or tryptamine

Alkylative cyclization allows rapid access to racemic flustramines

Tan, G. H.; Zhu, X.; Ganesan, A. Org. Lett. 2003, 5, 1801.

Biomimetic Approach

Menéndez used a similar strategy to access the flustramine core

López-Alvarado, P.; Caballero, E.; Avendaño, C.; Menéndez, C. J. Org. Lett. 2006, 8, 4303.

Biomimetic Approach

Tryptophan derivitaves give rise to possible diastereomers

Combined Yield (%)	electrophile	R ₁	R ₂	endo:exo
85	Н	Н	CO ₂ Me	9:1
65	PhthSePh	Boc	Boc	1:9
76	PhthSePh	CO ₂ Bn	CO ₂ Me	1:12
83	PhthSePh	CO ₂ Me	CO ₂ Me	1:11
40	PhthSePh	SO ₂ Ph	CO ₂ Me	<2:98
31	PhthSePh	SO ₂ PMP	CO ₂ Me	<2:98
0	PhthSePh	Н	CO ₂ Me	

Crich, D.; Huang, X. J. Org. Chem. 1999, 64, 7218.

Biomimetic Approach

Application in Danishefsky's synthesis of amauromine and acetylardeemin

Biomimetic Approach

Application in Danishefsky's synthesis of amauromine and acetylardeemin

Biomimetic Approach

Application in Danishefsky's synthesis of amauromine and acetylardeemin

5-N-acetylardeemin

Marsden, S. P.; Depew, K. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1994, 116, 11143.

Biomimetic Approach

The Joullié group synthesis of roquefortine C uses the same strategy as Danishefsky

Shangguan, N.; Hehre, W. J.; Ohlinger, W. S.; Beavers, M. P. Joullié, M. M. J. Am. Chem. Soc. 2008, 130, 6281.

Biomimetic Approach

The Joullié group synthesis of roquefortine C uses the same strategy as Danishefsky

Shangguan, N.; Hehre, W. J.; Ohlinger, W. S.; Beavers, M. P. Joullié, M. M. J. Am. Chem. Soc. 2008, 130, 6281.

Other electrophiles are also competent for pyrroloindoline formation

Kawahara, M.; Nishida, A.; Nakagawa, M. Org. Lett. 2000, 2, 675.

Biomimetic Approach

Danishefsky used a slight variation to construct the Himastatin core

Kamanecka, T. M.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1998, 37, 2993 and 2995.

Biomimetic Approach

Danishefsky used a slight variation to construct the Himastatin core

Kamanecka, T. M.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1998, 37, 2993 and 2995.

Biomimetic Approach

Electophilic sources of nitrogen have also been shown to work efficiently

Also works with tryptophan derivatives (45%)

Biomimetic Approach

Electophilic sources of nitrogen have also been shown to work efficiently

Newhouse, T.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 10886.

Biomimetic Approach

Dimerization of benzylic radicals allows access to dimeric structures

4 steps to (+)-chimonanthine

Biomimetic Approach

Dimerization of benzylic radicals allows access to dimeric structures

Movassaghi, M.; Schmidt, M. A. Angew. Chem. Int. Ed. 2007, 46, 3725.

Biomimetic Approach

Tryptophan derivatives will react with carbenes to give the pyrroloindoline core upon cyclization

He, B.; Song, H.; Du, Y.; Qin, Y. *J. Org. Chem.* **2009**, *74*, 298. Shen, L.; Zhang, M.; Wu, Y.; Qin, Y. *Angew. Chem. Int. Ed.* **2008**, *47*, 3618.

Biomimetic Approach

Tryptophan derivatives will react with carbenes to give the pyrroloindoline core upon cyclization

Qin uses a tethered carbene to access the fully substituted C-3 of Minfiensine

He, B.; Song, H.; Du, Y.; Qin, Y. *J. Org. Chem.* **2009**, *74*, 298. Shen, L.; Zhang, M.; Wu, Y.; Qin, Y. *Angew. Chem. Int. Ed.* **2008**, *47*, 3618.

Biomimetic Approach

Catalytic asymmetric approach to the flustramines by the MacMillan group

Austin, J. F.; Kim, S-G.; Sinz, C. J.; Xiao, W-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. 2004, 101, 5482.

Biomimetic Approach

Catalytic asymmetric approach to the flustramines by the MacMillan group

Austin, J. F.; Kim, S-G.; Sinz, C. J.; Xiao, W-J.; MacMillan, D. W. C. Proc. Natl. Acad. Sci. 2004, 101, 5482.

The 2-Oxoindole Approach

The pyrroloindoline core can also readily be attained through a suitable 2-oxoindole

generic 2-oxoindole

Julian, P. L.; Pikl. J.; Boggess. D. J. Am. Chem. Soc. 1934, 56, 1797.

Similarities to biomimetic approach but different oxidation state utilized

The 2-Oxoindole Approach

The pyrroloindoline core can also readily be attained through a suitable 2-oxoindole

generic 2-oxoindole

Julian, P. L.; Pikl. J.; Boggess. D. J. Am. Chem. Soc. 1934, 56, 1797.

Similarities to biomimetic approach but different oxidation state utilized

(±)-flustramine A

Fuchs, J. R.; Funk, R. L. Org. Lett. 2005, 7, 677.

The 2-Oxoindole Approach

Evidence for the indole-2-one intermediate

Fuchs, J. R.; Funk, R. L. Org. Lett. 2005, 7, 677.

The 2-Oxoindole Approach

Evidence for the indole-2-one intermediate

Fuchs, J. R.; Funk, R. L. Org. Lett. 2005, 7, 677.

Dalko invokes the same intermediate in the synthesis of meso-chimonanthine

The 2-Oxoindole Approach

Radical cyclization to provide the oxoindole by Ishibashi

The 2-Oxoindole Approach

Fujisawa pharmaceuticals thio-Claisen route to flustramine C core

The 2-Oxoindole Approach

Domino olefination/isomerization/Claisen rearrangement sequence to flustramines A and B

The 2-Oxoindole Approach

Domino olefination/isomerization/Claisen rearrangement sequence to flustramines A and B

(-)-flustramine A

Kawasaki, T.; Shinada, M.; Kamimura, D.; Ohzono, M.; Ogawa, A. Chem. Commun. 2006, 420.

The 2-Oxoindole Approach

Overman uses two basic strategies to access the pyrroloindoline core

Strategy 1: Intramolecular Heck reaction

The 2-Oxoindole Approach

Overman uses two basic strategies to access the pyrroloindoline core

Strategy 1: Intramolecular Heck reaction

Strategy 2: oxoindole alkylation

d.r. depends on R groups, base, additives solvent and temp

The 2-Oxoindole Approach

Possible alkylation transition states proposed by Overman

Si face alkylation **favored**

M.

TfO

Open transition states using Li or K enolates with THF/DMPU

major C_2

Huang, A.; Kodanko, J. J.; Overman, L. E.J. Am. Chem. Soc. 2004, 126, 14043.

The 2-Oxoindole Approach

Bisalkylation strategy in the synthesis of (–)-phenserine

The 2-Oxoindole Approach

Heck cascade to chimonanthine

Overman, L. E.; Paone, D. V.; Stearns, B. A. J. Am. Chem. Soc. 1999, 121, 7702.

The 2-Oxoindole Approach

Combination of alkylation and Heck reaction in Overman synthesis of idiospermuline

idiospermuline

Overman, L. E.; Peterson, E. A. Angew. Chem. Int. Ed. 2003, 42, 2525.

The 2-Oxoindole Approach

Zhu uses a domino Heck-cyanation sequence to obtain the oxoindole

Pinto, A.; Jia, Y.; Neuville, L.; Zhu, J. Chem. Eur. J. 2007, 13, 961.

The 2-Oxoindole Approach

Zhu uses a domino Heck-cyanation sequence to obtain the oxoindole

The 2-Oxoindole Approach

Zhu uses a domino Heck-cyanation sequence to obtain the oxoindole

The 2-Oxoindole Approach

Trost asymmetric allylation in the synthesis of (–)-physostigmine

Proposed model for enantiodescrimination

Trost. B. M. Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590.

The 2-Oxoindole Approach

Trost asymmetric allylation in the synthesis of (–)-esermethole and (–)-physostigmine

Trost. B. M. Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590.

Bis-enamine rearrangement to pyrroloindoline core of calabar alkaloids

Santos. P. F.; Srinivasan, N.; Almeida, P. S.; Lobo, A. M.; Prabhakar, S. Tetrahedron 2005, 61, 9147.

Bis-enamine rearrangement to pyrroloindoline core of calabar alkaloids

Santos. P. F.; Srinivasan, N.; Almeida, P. S.; Lobo, A. M.; Prabhakar, S. Tetrahedron 2005, 61, 9147.

Dimethallyl rearrangement to flustramine C

(±)-flustramine C

Lindel, T.; Bräuchle, L.; Golz, G.; Böhrer, P. Org. Lett. 2007, 9, 283.

■ [4+1] cyclization of a bis(alkylthio)carbene and indole isocyanate

Rigby, J. H.; Sidique, S. Org. Lett. 2007, 9, 1219.

[4+1] cyclization of a bis(alkylthio)carbene and indole isocyanate

Rigby, J. H.; Sidique, S. Org. Lett. 2007, 9, 1219.

Aza-Pauson-Khand-type reaction of alkynecarbodiimides

Aburano, D.; Yoshida, T.; Miyakoshi, N.; Mukai, C. J. Org. Chem. 2007, 72, 6878.

Other Methods

Asymmetric synthesis of calabar alkaloids by Ogasawara

Tanaka, K.; Taniguchi, T.; Ogasawara, K. Tetrahedron Letters 2001, 42, 1049.

Other Methods

Overman synthesis of (+)-minfiensine

Dounay, A. B.; Humphreys, P. G.; Overman. L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368.

Other Methods

Overman synthesis of (+)-minfiensine

Dounay, A. B.; Humphreys, P. G.; Overman. L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368.

Conclusions

- Each method has its strengths and weaknesses
- Biomimetic approach is rapid and tryptophan is an abundant source of chiral material
- Few enantioselective methods for pyrroloindoline construction have been developed
- Efficiently obtaining fully-substituted vicinal stereocenters of the pyrroloindoline core remains a challenge