Frontiers in Solar Cells

Jian Jin MacMillan Group Meeting January 25, 2017

World Electricity Generation by Source

- 2. Includes geothermal, solar, wind, heat, etc.
- 3. In these graphs, peat and oil shale are aggregated with coal.

iea International Energy Agency

Global Electricity Mix in 2011 and in 2050 (Scenario)

The roadmap 2014 set a goal for solar photovoltaics of 16% of total electricity generation by 2050.

Solar Energy Technologies

Solar energy is radiant light and heat from the sun.

Solar fuel

A solar fuel is a synthetic chemical fuel produced from solar energy typically by reducing protons to hydrogen, or carbon dioxide to organic compounds.

Artifical photosynthesis

Artificial photosynthesis is a chemical process that replicates the natural process of photosynthesis, a process that converts sunlight, water, and carbon dioxide into carbohydrates and oxygen.

Energy storage

Solar architecture

Greenhouse

Solar Energy Technologies

Solar energy is radiant light and heat from the sun.

Solar thermal energy: Concentrated solar power

Concentrating Solar Power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. The concentrated heat is then used as a heat source for a conventional power plant.

SolarReserves Crescent Dunes CSP Project, near Tonopah, Nevada, has an electricity generating capacity of 110 megawatts.

Solar Energy Technologies

Solar energy is radiant light and heat from the sun.

Photovoltaics: Solar Cell

An electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.

Theory

The operation of a photovoltaic cell requires three basic attributes

- The absorption of light, generating either electron-hole pair or excitons.
- The separation of charge carriers of opposite types.
- The separate extraction of those carriers to an external circuit.
- Separation mechanism: p-n junction
 - A p-n junction is a boundary or interface between two types of semiconductor material, p-type and n-type.
 - A common dopant for p-type silicon is boron.
 - A common dopant for n-type silicon is phosphorus.

Worldwide Annual PV Production by Technology

Market Share of Thin-Film Technologies

Crystalline Silicon Solar Cells

Monocrystalline silicon

- Grown by the Czochralski process into cylindrical ingots of up to 2 meter in length
- Sliced into thin wafers between 160 200 µm thick
- Cut into an octagon shape
- More expensive than most other types of cells
- More efficient, with a record lab cell efficiency: 25.3%

Multicrystalline silicon

- Made from cast square ingots large blocks of molten silicon carefully cooled and solidified
 Less expensive, but also less efficient, than monocrystalline silicon
- The most common type of solar cells, with a record lab cell efficiency: 21.3%

Thin Film Solar Cells

Amorphous silicon

- Made of non-crystalline silicon
- The most well-developed thin film technology to-date
- Deposit a very thin silicon layer of only 1 2 μm on glass, plastic or metal
- Absorbs visible light more strongly than the higher power density infrared light
- Less expensive but less efficient, with a record lab cell efficiency: 14.0%

Cadmium telluride

- The only thin film material so far to rival crystalline silicon in cost/watt
- Cadmium is highly toxic and tellurium supplies are limited
- Record lab cell efficiency: 22.1%

Au or Ni-Al metal contact

The Topaz Solar Farm, world's largest PV power station in 2014

Thin Film Solar Cells

Copper Indium Gallium Selenide

- Deposit a thin layer of $Culn_xGa_{(1-x)}Se_2$ on glass or plastic.
- CIGS is mainly used in the form of polycrystalline thin films
- The best efficiency achieved: 22.6%

Gallium Arsenide

- Single-crystalline thin film solar cells
- Very expensive, hold the world's record in efficiency for single-junction solar cell at 28.8%
- Commonly used in multijunction solar cells for concentrated photovoltaics
- Used for solar panels on spacecrafts

Triple-junction GaAs cells covering MidSTAR-1

Dye-sensitized Solar Cells

- 1968, Helmut Tributsch, illuminated chlorophyll could generate electricity at oxide electrodes.
- 1988, Brian O'Regan and Michael Gratzel co-invented the modern version of a dye solar cell with the trimeric ruthenium complex, Ru(H₂dcbpy)₂[Ru(bpy)'₂(CN)₂]₂, 7.1% efficiency. [Nature]
- 1993, Michael Gratzel discovered N₃; 1997, black dye, 10.4% efficiency.

Dye-sensitized Solar Cells

2003, Micheal Gratzel, a quasi-solid-state polymer gel electrolyte, 6.1% efficiency. [Nature Materials]

3-methoxypropionitrile + polyvinylidenefluoride-co-hexafluoropropylene dye Z907: cis-Ru(H2dcbpy)(dnbpy)(NCS)₂

2008, Micheal Gratzel, a new solvent-free liquid redox electrlyte consisting of a melt of 3 salts, 8.2% efficiency. [Nature Materials]

DMII/EMII/EMITCB

1,3-dimethylimidazolium iodide

1-ethyl-3-methylimidazolium iodide

1-ethyl-3-methylimidazolium B(CN)₄

2009, Michael Gratzel + Benoit Marsan claimed to have overcome two of DSC's major issues:

At the cathode, platinum was replaced by CoS, 6.5% efficiency. [JACS]

far less expensive, more efficient, more stable and easier to produce

New molecules for the electrolyte, transparent, non-corrosive, 6.4% efficiency. [Nature Chem] increase the photovoltage and improve the cell's output and stability

Dye-sensitized Solar Cells

2012, Northwestern University, Mercouri Kanatzidis, solid hole conductor, 10.2% efficency. [Nature]

solid CsSnI₃, doped with SnF₂, p-type dye N719 nanoporous TiO₂

■ 2014, EPFL's new convention center integrated with DSSC.

 $300\ m^2$, 1400 modules of 50 cm * 35 cm

Perovskite Solar Cells

Perovskite: a calcium titanium oxide mineral, calcium titanate CaTiO₃.

Perovskite structure: cystal structure ABX₃ as CaTiO₃.

■ CH₃NH₃PbI₃, known compound, new application

new type of solar cells was born!

Perovskite Solar Cells

2009, The University of Tokyo, Tsutomu Miyasaka, 3.8% efficency. [JACS]

based on a dye-sensitizer solar cell arcitecture

 $CH_3NH_3PdI_3$ as the sensitizer

Lil/I2 in methoxyacetonitrile as the electrolyte

■ 2012, University of Oxford, Henry Snaith, solid hole conductor, 10.9% efficiency. [Science]

■ 2012, Nam-Gyu Park, Michael Gratzel, spiro-MeOTAD, CH₃NH₃Pbl₃, 9.7% efficiency. [Scientific Reports]

■ 2013, Michael Gratzel, a sequential deposition technique, 15% efficiency. [Nature]

■ 2013, Michael Gratzel, a thermal vapour deposition technique, 15% efficiency. [Nature]

Perovskite Solar Cells

2014, Oxford, Henry Snaith, determined electron-hole diffusion length. [Science]

>1 μ m for CH₃NH₃PbI_{3-x}CI_x ~0.1 μ m for CH₃NH₃PbI₃

■ 2014, UCLA, Yang Yang, interface engineering, 19.3% efficiency.

■ 2015, Michael Gratzel, 21.0% efficiency.

■ 2016, KRICT and UNIST, 22.1% efficiency.

2009 - 2016, 3.8% - 22.1%!

The IV-curves of perovskite solar cells show a hysteretic behavior, which yield ambiguous efficiency values.

Only a small fraction of publications acknowledge the hysteretic behavior of the described devices, even fewer articles show slow non-hysteretic IV curves or stabilized power outputs.

Stability

One big challenge for perovskite solar cells (PSCs) is the aspect of short-term and long-term stability.

Environment influence (moisture and oxygen)

Thermal influence (temperature and intrinsic heating under applied voltage)

Photo influence (UV light)

Konarka 8.3% PBDTTT-CF 10 Power conversion efficiencies % **Effect of additives** 8 P3HT 6 fect of annealing MDMD-PPV Effect of solvent Introduction 2 Introduction of PCBM of optical spacer 2000 2005 1995 2010 Year

Organic (polymer) solar cell is a type of photovoltaic made with organic molecules including polymers.

Advantages

- solution-processable at high throughput
- cheap
- good flexibility
- molecular engeering can change the band gap
- Implies high absorption of light, 0.1 μ m thin film

Drawbacks
 Iow efficiency, record 11.7%
 Iow stability
 Iow strength

Organic Solar Cells

Single layer organic solar cells

electrode 1 (ITO, metal) organic electronic material (small molecule, polymer) electrode 2

(Al, Mg, Ca)

a layer of indium tin oxide with high work function

these two layers set up an electric field in the organic layer

a layer of Al, Mg or Ca with low work function

week electric field, low efficiency

Bilayer organic solar cells

lower electron affinity and ionization potential, copper phthalocyanine

higher electron affinity and ionization potential, C60, PCBM, perylene

diffusion length of excitons is around 10 nm a polymer layer needs a thickness of 100 nm to absorb enough light

Organic Solar Cells

Controled growth heterojunction, 2005, Princeton University, Stephen Forrest. [Nature Materials]

2016, Hong Kong UST, He Yan, best research organic solar cell efficiency 11.7%. [Nature Energy] fullerene derivative PC₇₁BM as acceptor

Organic Solar Cells

2016, Hong Kong UST, He Yan, non-fullerene organic solar cell efficiency 9.5%. [Nature Energy] perylene derivative SF-PDI₂ as acceptor

Quantum Dot Solar Cells

Quamtum dots: nanometer size semicoductor with bandgaps that are tuable by dots' size.

irradiated with a UV light, larger QDs (5-6 nm) emit orange or red light while smaller QDs emit blue or green light

Quamtum dot cells: based on DSSC architecture, employ QDs (CdS, CdSe, PbS etc.) as light absorbers.

Quantum Dot Solar Cells

2012, University of Toronto, Edward Sargent, PbS, 7.0% efficiency. [Nature Nanotechnology]

2014, University of Toronto, Edward Sargent, air-stable PbS, 8.0% efficiency. [Nature Materials]

2014, MIT, Moungi Bawenedi, ZnO/ PbS, 8.5% efficiency. [Nature Materials]

2016, University of Toronto, Edward Sargent, 10.6% efficiency. [Nature Energy]

2016, University of Toronto, Edward Sargent, 11.3% efficiency. [Nature Materials]

