Highlights from Top Pre-Tenure Faculty

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

Copyright © 2003 David Farley, d-farley@ibiblio.org

Jennifer Alleva MacMillan Group Meeting May 2nd 2012

■ Who are the assistant professors in the top 50 chemistry departments?

■ Who are the assistant professors in the top 50 chemistry departments?

Currently 95 pre-tenure faculty in chemistry

■ Who are the assistant professors in the top 50 chemistry departments?

Currently 95 pre-tenure faculty in chemistry

85% of assistant chemistry professors are male

15% are female

14% were not trained in the U.S.

Who are the assistant professors in the top 50 chemistry departments?

Currently 95 pre-tenure faculty in chemistry

85% of assistant chemistry professors are male

15% are female

14% were not trained in the U.S.

Who are the assistant professors in the top 10 chemistry departments?

Currently 16 pre-tenure faculty

13 of these assistant professors are male

2 of these assistant professors were not trained in the U.S.

3 of these assistant professors are women

Which institutions trained these current assistant faculty?

80% of assistant chemistry professors were trained at a top 10 department

Caltech Harvard MIT Berkeley UIUC Northwestern Stanford Scripps UW Madison Columbia Cornell

Which institutions trained these current assistant faculty?

80% of assistant chemistry professors were trained at a top 10 department

Caltech Harvard MIT Berkeley UIUC Northwestern Stanford Scripps UW Madison Columbia Cornell

Which labs did they come from?

Which institutions trained these current assistant faculty?

80% of assistant chemistry professors were trained at a top 10 department

Caltech Harvard MIT Berkeley UIUC Northwestern Stanford Scripps UW Madison Columbia Cornell

Which labs did they come from?

Eric Jacobsen Larry Overman Bergman/Ellman

Which institutions trained these current assistant faculty?

80% of assistant chemistry professors were trained at a top 10 department

Caltech Harvard MIT Berkeley UIUC Northwestern Stanford Scripps UW Madison Columbia Cornell

Which labs did they come from?

Eric Jacobsen	 6 Students pre-tenure as of April 2012 Am Pat Re 	Bob Grubbs	■ 4 Students pre-tenure
Larry Overman		Amir Hoveyda	as of April 2012
Bergman/Ellman		Patrick Walsh	
		Reza Ghadiri	
		Dave Evans	
	S	Samuel Danishefskv	

What are the current research interests within the field of organic chemistry?

■ What are the current research interests within the field of organic chemistry?

95 pre-tenure faculty currently in organic chemistry

53 within Organic Synthesis and Methodology

23 Chemical Biology

19 Organic Materials

What are the current research interests within the field of organic chemistry?

95 pre-tenure faculty currently in organic chemistry

53 within Organic Synthesis and Methodology

23 Chemical Biology

19 Organic Materials

What are assistant professors studying at the top 10 departments?

5 within Organic Synthesis and Methodology

6 Chemical Biology

5 Materials

What are the current research interests within the field of organic chemistry?

95 pre-tenure faculty currently in organic chemistry

53 within Organic Synthesis and Methodology

23 Chemical Biology

19 Organic Materials

What are assistant professors studying at the top 10 departments?

5 within Organic Synthesis and Methodology

6 Chemical Biology

5 Materials

What does this information indicate for the future of organic chemistry?

How to select the top 5 pre-tenure faculty

Criteria:

- United States institutions
- Limiting survey to organic chemists
- Must have published papers to define the goals of their program
- No MacMillan group alumni or Princeton Chemistry faculty

Highlights from top Pre-tenure Faculty

Sarah Reisman

Caltech

Sarah Reisman Caltech

- Caltech 2008-present
- Ph.D. with John Wood on the total synthesis of Welwitindolinone A Isonitrile
- Postodoctoral studies with Eric Jacobsen on thiourea catalyzed additions to oxocarbenium ions

Reisman, S.E.; Ready, J.M.; Weiss, M.M.; Hasuoka, A.; Tamaki, K.; Ovaska, T.V.; Wood, J.L. *J. Am. Chem. Soc.* **2008**, *130*, 2087 Reisman, S.E.; Doyle, A.G.; Jacobsen, E.N. *J. Am. Chem. Soc.* **2008**, *130*, 7198

Research in the Reisman Lab

Total synthesis and synthetic methodology

Total synthesis of complex natural products

(+)-Salvileucalin B

(-)-Maoecrystal Z

Codelli, J. A.; Puchlopek, A. L. A.; Reisman, S.E. J. Am. Chem. Soc. 2012, 134, 1930-1933.
 Z. Cha, J. Y.; Yeoman, J. T. S.; Reisman, S.E. J. Am. Chem. Soc. 2011, 133, 14965.
 Chuang, K.V.; Navarro, R.N.; Reisman, S.E. Angew. Chem. Int. Ed. 2011, 50, 9447.
 Levin, S.; Nani, R.N.; Reisman, S.E. J. Am. Chem. Soc. 2011, 133, 774.

Research in the Reisman Lab

Total synthesis and synthetic methodology

Total synthesis of complex natural products

OMe

- (-)-8-Demethoxyrunanine
- (+)-Salvileucalin B
- (-)-Maoecrystal Z

Revival of the Buchner reaction for the synthesis of cyclopropane rings

Codelli, J. A.; Puchlopek, A. L. A.; Reisman, S.E. J. Am. Chem. Soc. 2012, 134, 1930-1933. Z. Cha, J. Y.; Yeoman, J. T. S.; Reisman, S.E. *J. Am. Chem. Soc.* **2011**, *133*, 14965. Chuang, K.V.; Navarro, R.N.; Reisman, S.E. *Angew. Chem. Int. Ed.* **2011**, *50*, 9447. Levin, S.; Nani, R.N.; Reisman, S.E. *J. Am. Chem. Soc.* **2011**, *133*, 774.

Intercepting the norcaradiene intermediate

Buchner reaction for the formation of 7-membered rings

Reisman, S.E.; Nani, R. R., Levin, S. Synlett, 2011, 17, 2437.

Intercepting the norcaradiene intermediate

Buchner reaction for the formation of 7-membered rings

Isomerization of cycloheptatriene provides a thermodynamic mixture

"Buchner Esters"

Reisman, S.E.; Nani, R. R., Levin, S. Synlett, 2011, 17, 2437.

Intercepting the norcaradiene intermediate

Retrosynthesis of Salvileucalin B

(+)-Salvileucalin B

Levin, S.; Nani, R.R.; Reisman, S.E. Org. Lett. 2010, 12, 780

Intercepting the norcaradiene intermediate

Retrosynthesis of Salvileucalin B

(+)-Salvileucalin B

Levin, S.; Nani, R.R.; Reisman, S.E. Org. Lett. 2010, 12, 780

Intercepting the norcaradiene intermediate

Retrosynthesis of Salvileucalin B

Intercepting the norcaradiene intermediate

Retrosynthesis of Salvileucalin B

Intercepting the norcaradiene intermediate

Application of the Buchner reaction for the synthesis of Salvileucalin B

entry	catalyst	yield (%)
1	Rh(OAc) ₄	14
2	Rh(cap) ₄	1
3	Rh(tfa) ₄	5

Levin, S.; Nani, R.R.; Reisman, S.E. Org. Lett. 2010, 12, 780.

Intercepting the norcaradiene intermediate

Application of the Buchner reaction for the synthesis of Salvileucalin B

entry	catalyst	yield (%)
1	Rh(OAc) ₄	14
2	Rh(cap) ₄	1
3	Rh(tfa) ₄	5
4	Cu(acac) ₂	30
5	Cu(tfacac) ₂	50 (73)*
6	Cu(hfacac) ₂	40
7	Cu(TMHD) ₂	28
8	Cu(TBS) ₂	11

*Isolated yield, slow addition of a-diazoketone

Levin, S.; Nani, R.R.; Reisman, S.E. Org. Lett. 2010, 12, 780.

Enantioselective Total Synthesis of Salvileucalin B Synthesis of triyne precurser

Enantioselective synthesis of cycloisomerization precurser

chiral ligand

Enantioselective Total Synthesis of Salvileucalin B Synthesis of triyne precurser

Enantioselective synthesis of cycloisomerization precurser

chiral ligand

Enantioselective Total Synthesis of Salvileucalin B Synthesis of triyne precurser

Enantioselective synthesis of cycloisomerization precurser

Enantioselective Total Synthesis of Salvileucalin B Synthesis of Buchner precurser

Metal-catalyzed cycloisomerization and synthesis of cyclopropanation precursor

Enantioselective Total Synthesis of Salvileucalin B Synthesis of Buchner precurser

Metal-catalyzed cycloisomerization and synthesis of cyclopropanation precursor

Enantioselective Total Synthesis of Salvileucalin B Synthesis of Buchner precurser

Metal-catalyzed cycloisomerization and synthesis of cyclopropanation precursor

Enantioselective Total Synthesis of Salvileucalin B Synthesis of Norcaradiene Core

Application of Cu-mediated Buchner reaction

Enantioselective Total Synthesis of Salvileucalin B Synthesis of Norcaradiene Core

Application of Cu-mediated Buchner reaction

Enantioselective Total Synthesis of Salvileucalin B Synthesis of Norcaradiene Core

Application of Cu-mediated Buchner reaction

Enantioselective Total Synthesis of Salvileucalin B End game

Synthesis of lactone and oxidation of tetrahydrofuran

Enantioselective Total Synthesis of Salvileucalin B End game

Synthesis of lactone and oxidation of tetrahydrofuran

Me

1:2 ratio

Levin, S.; Nani, R.N.; Reisman, S.E. J. Am. Chem. Soc. 2011, 133, 774.

Research in the Reisman Lab

Total synthesis and synthetic methodology

Total synthesis of complex natural products

OMe

- (-)-8-Demethoxyrunanine
- (+)-Salvileucalin B
- (-)-Maoecrystal Z

Revival of the Buchner reaction for the synthesis of cyclopropane rings

Codelli, J. A.; Puchlopek, A. L. A.; Reisman, S.E. J. Am. Chem. Soc. 2012, 134, 1930-1933. Z. Cha, J. Y.; Yeoman, J. T. S.; Reisman, S.E. *J. Am. Chem. Soc.* **2011**, *133*, 14965. Chuang, K.V.; Navarro, R.N.; Reisman, S.E. *Angew. Chem. Int. Ed.* **2011**, *50*, 9447. Levin, S.; Nani, R.N.; Reisman, S.E. *J. Am. Chem. Soc.* **2011**, *133*, 774.

Highlights from top Pre-tenure Faculty

Sarah Reisman

Caltech

Neil Garg

UCLA

Neil Garg

- Assistant Professor at UCLA 2007-present
- Ph.D. with Brian Stoltz on the total synthesis of Dragmacidin D and F
- Postdoctoral work with Larry Overman on the total synthesis of (–)-Sarain A

Garg, Neil, K; Hiebert, Sheldon; Larry E. Overman. *Angew. Chem. Int. Ed.* 2006, *45*, 2912.
Garg, Neil, K; Caspi, Daniel D.; Brian M. Stoltz. *J. Am. Chem. Soc.* 2004, *126*, 9552.
Garg, Neil, K; Sarpong, R.; Brian M. Stoltz. *J. Am. Chem. Soc.* 2002, *124*, 13179.

Synthesis of complex natural products

N-Methylwelwitindolinone C Isothiocyanate

Indolactam V

Aspidophylline A

Synthesis of complex natural products

N-Methylwelwitindolinone C Isothiocyanate

Indolactam V

Aspidophylline A

Development of novel synthetic methods

Intercepting Indolyne

Synthesis of complex natural products

N-Methylwelwitindolinone C Isothiocyanate

Indolactam V

Aspidophylline A

Development of novel synthetic methods

Umpolong of the Indole heterocycle

Indole

Umpolong of the Indole heterocycle

Umpolong of the Indole heterocycle

Umpolong of the Indole heterocycle

Preference for C-5 attack of nucleophile observed experimentally

Experimental regioselectivity compares to computational prediction

Nucleophile	Yield, Ratio (C-5/C-4)	Computed
Me	80%, 3:1	∆∆G [‡] =2.8 115:1
	91%, 12.5:1	∆∆G [‡] =3.0 160:1
N ₃ —Bn	86%, 2.4:1	∆∆G [‡] =0.6 2.5:1
KCN	85%, 3.3:1	C-5 preferred

Nu attack at C-4 increases unfavorable distortion: θ_{ccc} becomes 108°

Nu attack at C-4 increases unfavorable distortion: θ_{ccc} becomes 108°

preference for C-5 attack diminished C-5 and C-6 have similar θ

C-6 attack exclusively

Lessons learned from computation:

more planar site is preferred for nucleophilic attack more electropositive carbon is preferred site for nucleophilic attack

Lessons learned from computation:

more planar site is preferred for nucleophilic attack more electropositive carbon is preferred site for nucleophilic attack

Can inclusion of a C-6 bromine direct nucleophilic attack to C-4?

Lessons learned from computation:

more planar site is preferred for nucleophilic attack more electropositive carbon is preferred site for nucleophilic attack

Can inclusion of a C-6 bromine direct nucleophilic attack to C-4?

C-4
$$\theta_{ccc} = 130^{\circ}$$

C-5 $\theta_{ccc} = 124^{\circ}$

Bromine reverses selectivity of nucleophilic addition for a variety of nucleophiles

Synthesis of Indolactam V

Synthesis of Indolactam V

Me Me н Me TMS Me. Me OMe TfO. 0 CsF Ö Me ЮH OMe CH₃CN, 0°C to r.t. Br Ö (62% yield) OH B Me. Me Me. 1. H₂, Pd/C, Et₃N, MeOH OMe 0 2. Ac₂O, AcOH, 23°C 3. K₂CO₃, DMF, 65°C (69% yield, 3 steps)

Synthesis of Indolactam V

Me Me Me TMS Me Me OMe TfO. Ο CsF Ö Me ЮH OMe CH₃CN, 0°C to r.t. Br Ö (62% yield) OH B Me. Me Me Me. н н Me. Me. 1. H₂, Pd/C, Et₃N, MeOH ZrCl₄ `OMe OMe || 0 0 2. Ac₂O, AcOH, 23°C CH₂Cl₂, 34°C 3. K₂CO₃, DMF, 65°C (56% yield, 24% RSM) (69% yield, 3 steps)

Synthesis of Indolactam V

Reversing the Regioselectivity in Nucleophilic Additions to Indolyne Application to the synthesis of N-MethylWelwitindolinone C Isothiocyante

Assembly of [4.3.1] bicycle through indolyne cyclization

Reversing the Regioselectivity in Nucleophilic Additions to Indolyne Application to the synthesis of N-MethylWelwitindolinone C Isothiocyante

Assembly of [4.3.1] bicycle through indolyne cyclization

Huters, A. D.,; Quasdorf, K. W.; Styduhar, E. D.; Garg, Neil, K. J. Am. Chem. Soc. 2011, 133, 3832.

Reversing the Regioselectivity in Nucleophilic Additions to Indolyne Application to the synthesis of N-MethylWelwitindolinone C Isothiocyante

Assembly of [4.3.1] bicycle through indolyne cyclization

Huters, A. D.,; Quasdorf, K. W.; Styduhar, E. D.; Garg, Neil, K. J. Am. Chem. Soc. 2011, 133, 3832.

Synthesis of complex natural products

N-Methylwelwitindolinone C Isothiocyanate

Indolactam V

Aspidophylline A

Development of novel synthetic methods

Highlights from top Pre-tenure Faculty

Sarah Reisman

Caltech

Neil Garg UCLA

Gojko Lalic

University of Washington

Gojko Lalic University of Washington

- Assistant Professor, University of Washington 2008-present
- Postdoctoral fellow with E. J. Corey on the synthesis of Platensimycin
- Postdoctoral fellow with R. Bergman studying the reactions of zirconium complexes
- Ph.D. with Matt Shair studying the metal catalyzed thioester aldol and Mannich reactions

Research in the Lalic Lab Organic Synthesis and Synthetic Methodology

Novel methods in copper catalysis

Boronic Esters

Asymmetric Synthesis of Trisubstituted Allenes

Η

`Me

Research in the Lalic Lab Organic Synthesis and Synthetic Methodology

Novel methods in copper catalysis

Synthesis of Hindered Anilines

Anti-Markovnikov Hydroamination

■ *N*-Aryl structural motif highly prevalent in medicinal agents

N-Aryl structural motif highly prevalent in medicinal agents

- No method of direct synthesis of a product prefunctionalized with –I or –Br
- Most methods require excess of one coupling partner
- Chan-Lam amination is incompatable with hindered substrates

Ar–B(OR) ₂	L	М	Solvent	Yield (%)
1	IMes	Na	THF	<5
2	IMes	Na	THF	16
3	IMes	Na	THF	72

Copper-Catalyzed Electrophilic Amination of Aryl Boronic Esters Synthesis of Hindered Anilines

Copper-Catalyzed Electrophilic Amination of Aryl Boronic Esters Synthesis of Hindered Anilines

Ar–B(OR) ₂	L	М	Solvent	Yield (%)
3	Xantphos	Na	1,4-dioxane	99
4	Xantphos	Na	1,4-dioxane	8
4	Xantphos	Li	1,4-dioxane	56

Copper-Catalyzed Electrophilic Amination of Aryl Boronic Esters Synthesis of Hindered Anilines

	Ar–B(OR) ₂	L	М	Solvent	Yield (%)	
	3	Xantphos	Na	1,4-dioxane	99	
	4	Xantphos	Na	1,4-dioxane	8	
	4	Xantphos	Li	1,4-dioxane	56	
`	4	Xantphos	Li	PhMe	74	
3	4	Xantphos	Li	PhMe	81	С
)	4	Xantphos	Li	PhMe	94 ∫ 60°0	С
	N.4					

PPh₂ PPh₂ O Me Me

Copper-Catalyzed Electrophilic Amination of Aryl Boronic Esters Substrate Scope

Rucker, R. P.; Whittaker, A. M.; Fang, H.; Gojko Lalic Angew. Chem. Int. Ed. 2012, 51, 3953.

Rucker, R. P.; Whittaker, A. M.; Fang, H.; Gojko Lalic Angew. Chem. Int. Ed. 2012, 51, 3953.

Rucker, R. P.; Whittaker, A. M.; Fang, H.; Gojko Lalic Angew. Chem. Int. Ed. 2012, 51, 3953.

simple olefin

Single Regioisomer of Tertiary Alkylamine

simple olefin

Single Regioisomer of Tertiary Alkylamine

Can this be achieved through a novel hydroboration-amination procedure?

Initial Studies

Entry	R ₂ N–OBz	Μ	Cosolvent	Yield
1		Na	1,4-dioxane	16%
2	Bn Bn	К	1,4-dioxane	11%
3	ÓBz	Li	1,4-dioxane	56%
4		Li	pentane	97%

Initial Studies 9-BBN-H, 1,4-dioxane R_1 60°C, 12h then Ph' R_2 Ph R¹R²N-OBz, MOtBu ICyCuCl (5 mol%) solvent, 45°C, 6h R₂N–OBz Μ Cosolvent Yield Entry 5 Li <5% pentane ÔBz

Initial Studies

Entry	R ₂ N–OBz	М	Cosolvent	Yield
5		Li	pentane	<5%
6 ¹		Li	pentane	52%

¹Electrophile added over 6 hours

Initial Studies

Entry	R ₂ N–OBz	М	Cosolvent	Yield
5		Li	pentane	<5%
61	\bigcap°	Li	pentane	52%
7 ²	N N OBz	Li	toluene	86%
8 ³		Li	toluene	99%

¹Electrophile added over 6 hours ²Electrophile added over 3 hours ³60°C

Research in the Lalic Lab Organic Synthesis and Synthetic Methodology

Novel methods in copper catalysis

Synthesis of Hindered Anilines

Anti-Markovnikov Hydroamination

Highlights from top Pre-tenure Faculty

Sarah Reisman

Caltech

Neil Garg UCLA

Gojko Lalic University of Washington

Corey Stephenson Boston University

Corey Stephenson Boston University

- Assistant Professor at Boston University 2007-present
- Ph.D. with Peter Wipf on the development of alkylzirconocene catalyzed C-C bond formations
- Postdoctoral work with Erick Carreira in asymmetric catalysis using chiral diene ligands

Research in the Stephenson Group Photoredox Catalysis

Photoredox catalysis

Photoredox Aza-Henry

Nucleophilic trapping of iminiums generated through photoredox

Complex molecule synthesis

gliocladin C

syringolin A

Research in the Stephenson Group Photoredox Catalysis

Coord. Chem. Rev. 1988, 84, 85.

Research in the Stephenson Group

Photoredox Catalysis

Coord. Chem. Rev. 1988, 84, 85.

Research in the Stephenson Group

Photoredox Catalysis

Coord. Chem. Rev. 1988, 84, 85.

Oxidative functionalization of tertiary amines

Tucker, J. W.; Stephenson, C. R. J. *J. Org. Chem* **2012**, *77*, 1617. McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science, **2011**, *334*, *1114*.

Oxidative functionalization of tertiary amines

Tucker, J. W.; Stephenson, C. R. J. *J. Org. Chem* **2012**, *77*, 1617. McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science, **2011**, *334*, *1114*.

Oxidative functionalization of tertiary amines

Tucker, J. W.; Stephenson, C. R. J. *J. Org. Chem* **2012**, *77*, 1617. McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science, **2011**, *334*, *1114*.

Oxidative functionalization of tertiary amines

Research in the Stephenson Group Photoredox Catalysis for Amine Functionalization **Oxidative functionalization of tertiary amines** $R = R_1^{R_1} + R_2^{R_2} + R_2^{R_1} + R_2^{R_2} + R_2^{R_1} + R_2^{R_2} + R_2^{R_2$

 $Ru(bpy)_3^{2+*}$ $Ru(bpy)_3^+$

 R_2

amine radical cation

Photoredox Catalyzed Aza-Henry Reaction

Photoredox Catalysis for Amine Functionalization

Initial Studies

* percent conversion

Photoredox Catalyzed Aza-Henry Reaction

Photoredox Catalysis for Amine Functionalization

Initial Studies

Photocatalyst	Oxidant	Solvent	Nucleophile	Yield
Ru(bpy) ₃ ²⁺	(EtO ₂ C) ₂ CHBr	DMF	OMe	73%
Ru(bpy) ₃ ²⁺	(EtO ₂ C) ₂ CHBr	MeOH	OMe	100%*
Ru(bpy) ₃ ²⁺	no additive	MeOH	OMe	100%*
Ru(bpy) ₃ ²⁺	no additive	CH ₃ NO ₂	CH ₃ NO ₂	81%
Ru(bpy) ₃ ²⁺	degassed	CH ₃ NO ₂	CH ₃ NO ₂	76%

* percent conversion

Photoredox Catalyzed Aza-Henry Reaction

Photoredox Catalysis for Amine Functionalization

Initial Studies

	Photocatalyst	Oxidant	Solvent	Nucleophile	Yield
	Ru(bpy) ₃ 2+	(EtO ₂ C) ₂ CHBr	DMF	OMe	73%
	Ru(bpy) ₃ ²⁺	(EtO ₂ C) ₂ CHBr	MeOH	OMe	100%*
	Ru(bpy) ₃ ²⁺	no additive	MeOH	OMe	100%*
	Ru(bpy) ₃ ²⁺	no additive	CH ₃ NO ₂	CH ₃ NO ₂	81%
	Ru(bpy) ₃ ²⁺	degassed	CH ₃ NO ₂	CH ₃ NO ₂	76%
	lr(ppy) ₂ (dtbbpy)PF ₆	O ₂	CH ₃ NO ₂	CH ₃ NO ₂	92%
no light	lr(ppy) ₂ (dtbbpy)PF ₆	O ₂	CH ₃ NO ₂	CH ₃ NO ₂	0%*
	no catalyst: 7.5 days	O ₂	CH ₃ NO ₂	CH ₃ NO ₂	83%*

* percent conversion

Photoredox Catalyzed Aza-Henry Reaction Substrate Scope Ir(ppy)₂(dtbbpy)PF₆ (2 mol%) CH₃NO₂ neat `Ph Ph visible light, air NO_2 MeO N. Ν. **`**Ph **`**Ph **`**Ph MeO **`**Ph CI NO_2 NO₂ NO₂ NO₂ Me 92% 96% 95% 92% NO₂ Ph NO_2 Me NO₂ OMe `OMe 96% 96% 27%

Condie, A. G.; Gonzalez-Gomez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010, 132, 1464

Photocatalyst	Oxidant	Solvent	Yield
lr(ppy) ₂ (dtbbpy)PF ₆	(EtO ₂ C) ₂ CHBr	DMF	36%
Ru(bpy) ₃ ²⁺	(EtO ₂ C) ₂ CHBr	DMF	95%

Photocatalyst	Oxidant	Solvent	Yield
lr(ppy) ₂ (dtbbpy)PF ₆	(EtO ₂ C) ₂ CHBr	DMF	36%
Ru(bpy) ₃ ²+	(EtO ₂ C) ₂ CHBr	DMF	95%
Ru(bpy) ₃ ²⁺	CCl ₄ /DMF 1:1	DMF	36%
Ru(bpy) ₃ ²+	CCI ₄	CH ₃ CN	53%
Ru(bpy) ₃ ²⁺	BrCCl ₃	DMF	60%

_	Photocatalyst	Oxidant	Solvent	Yield	
	lr(ppy) ₂ (dtbbpy)PF ₆	(EtO ₂ C) ₂ CHBr	DMF	36%	
	Ru(bpy) ₃ ²⁺	(EtO ₂ C) ₂ CHBr	DMF	95%	
	Ru(bpy) ₃ ²⁺	CCl ₄ /DMF 1:1	DMF	36%	
	Ru(bpy) ₃ ²⁺	CCI ₄	CH ₃ CN	53%	
	Ru(bpy) ₃ ²⁺	BrCCl ₃	DMF	60%	
	Ru(bpy) ₃ ²⁺	BrCCl ₃	DMF	85%)
Bu₄NCN as Nu	Ru(bpy) ₃ ²⁺	BrCCl ₃	DMF	17%	iminium pre-generated

-	Photocatalyst	Oxidant	Solvent	Yield	
	lr(ppy) ₂ (dtbbpy)PF ₆	(EtO ₂ C) ₂ CHBr	DMF	36%	
	Ru(bpy) ₃ ²⁺	(EtO ₂ C) ₂ CHBr	DMF	95%	
	Ru(bpy) ₃ ²⁺	CCl ₄ /DMF 1:1	DMF	36%	
	Ru(bpy) ₃ ²⁺	CCl ₄	CH₃CN	53%	
	Ru(bpy) ₃ ²⁺	BrCCl ₃	DMF	60%	
	Ru(bpy) ₃ ²⁺	BrCCl ₃	DMF	85%)
Bu₄NCN as Nu	Ru(bpy) ₃ ²⁺	BrCCl ₃	DMF	17%	iminium
	Ru(bpy) ₃ ²⁺	BrCCl ₃	THF	NR	pre-generaled
	Ru(bpy) ₃ ²⁺	BrCCl ₃	2:1 THF/H ₂ O	83%	J

Nucleophilic Trapping of Iminium Intermediates

Photoredox Catalysis

Research in the Stephenson Group Photoredox Catalysis

Photoredox catalysis

Photoredox Aza-Henry

Nucleophilic trapping of iminiums generated through photoredox

Complex molecule synthesis

gliocladin C

syringolin A

Highlights from top Pre-tenure Faculty

Sarah Reisman

Caltech

Neil Garg UCLA

Gojko Lalic University of Washington

Corey Stephenson Boston University

Highlights from top Pre-tenure Faculty

Sarah Reisman

Caltech

Neil Garg UCLA

Gojko Lalic University of Washington

Corey Stephenson Boston University Regan Thomson Northwestern

Regan Thomson Northwestern University

- Assistant Professor at Northwestern 2007-present
- Ph.D. with Prof. L. Mander, total synthesis of *Sordaricin*
- Solution Postdoctoral work with Prof. Dave Evans developing enantioselective *Ni* catalyzed methods

■ Novel methods for C–C bond construction

Oxidative Couplings of Silyl Enol Ethers

Traceless Reaction Development

Novel methods for C–C bond construction

Oxidative Couplings of Silyl Enol Ethers

Traceless Reaction Development

Total synthesis of complex natural products

Prodigiosin R1 (R=iPr)

GB17

Streptorubin B

Novel methods for C–C bond construction

Oxidative Couplings of Silyl Enol Ethers

Total synthesis of complex natural products

Traceless Bond Construction Bond Formation without an Obvious Retron

E Formation of a new σ -bond without extrusion of a functional handle

Mundal, D. A.; Avetta, C. T.; Thomson, R. J. *Nature Chem.* **2010**, *2*, 294. Stevens, R. V. et al. *Chem. Commun.* **1973**, 662. Traceless Bond Construction Bond Formation without an Obvious Retron

E Formation of a new σ -bond without extrusion of a functional handle

Steven's thermal rearrangement of *N*-allylhydrazones

Mundal, D. A.; Avetta, C. T.; Thomson, R. J. *Nature Chem.* **2010**, *2*, 294. Stevens, R. V. et al. *Chem. Commun.* **1973**, 662. Cu(II) Promoted [3,3] Sigmatropic Rearrangement Tandem C–C and C–Cl Bond Formation

Steven's thermal rearrangement of *N*-allylhydrazones

Mundal, D. A.; Lee, J. L.; Thomson, R. J. *J. Am. Chem. Soc.* **2008**, *130*, 1148. Stevens, R. V. et al. *Chem. Commun.* **1973**, 662. Cu(II) Promoted [3,3] Sigmatropic Rearrangement Tandem C–C and C–Cl Bond Formation

Steven's thermal rearrangement of *N*-allylhydrazones

Utilizing N-allylhydrazones in Synthesis

Mundal, D. A.; Lee, J. L.; Thomson, R. J. *J. Am. Chem. Soc.* **2008**, *130*, 1148. Stevens, R. V. et al. *Chem. Commun.* **1973**, 662. Cu(II) Promoted [3,3] Sigmatropic Rearrangement Tandem C–C and C–CI Bond Formation

Optimization of Cu promoted rearrangement

Cu(II) Promoted [3,3] Sigmatropic Rearrangement Tandem C–C and C–CI Bond Formation

Optimization of Cu promoted rearrangement

Entry	Solvent	Temp (°C)	CuCl ₂ (equiv)	time (h)	Conversion (%)
1	PhMe	110	0	24	0
2	PhMe	23	1	24	0
3	THF	23	1	24	0
4	MeOH	23	1	24	0
5	DCM	23	1	24	25

Cu(II) Promoted [3,3] Sigmatropic Rearrangement Tandem C–C and C–CI Bond Formation

Optimization of Cu promoted rearrangement

Entry	Solvent	Temp (°C)	CuCl ₂ (equiv)	time (h)	Conversion (%)
1	PhMe	110	0	24	0
2	PhMe	23	1	24	0
3	THF	23	1	24	0
4	MeOH	23	1	24	0
5	DCM	23	1	24	25
6	MeCN	23	1	24	28
7	MeCN	23	4	16	100

Cu(II) Promoted [3,3] Sigmatropic Rearrangement Tandem C–C and C–Cl Bond Formation

Optimization of Cu promoted rearrangement

Entry	Solvent	Temp (°C)	CuCl ₂ (equiv)	time (h)	Conversion (%)
1	PhMe	110	0	24	0
2	PhMe	23	1	24	0
3	THF	23	1	24	0
4	MeOH	23	1	24	0
5	DCM	23	1	24	25
6	MeCN	23	1	24	28
7	MeCN	23	4	16	100
8	MeCN	82	4	0.3	100

New approach broadens substrate scope

New approach broadens substrate scope

93:7 er

Novel methods for C–C bond construction

Oxidative Couplings of Silyl Enol Ethers

Traceless Reaction Development

Total synthesis of complex natural products

Prodigiosin R1 (R=iPr)

GB17

Streptorubin B
Highlights from top Pre-tenure Faculty

Sarah Reisman

Caltech

Neil Garg UCLA

Gojko Lalic University of Washington

Corey Stephenson Boston University Regan Thomson Northwestern