Modern Stylistic Points in Retrosynthetic Analysis

Jen Alleva MacMillan Group Meeting January 8th 2014

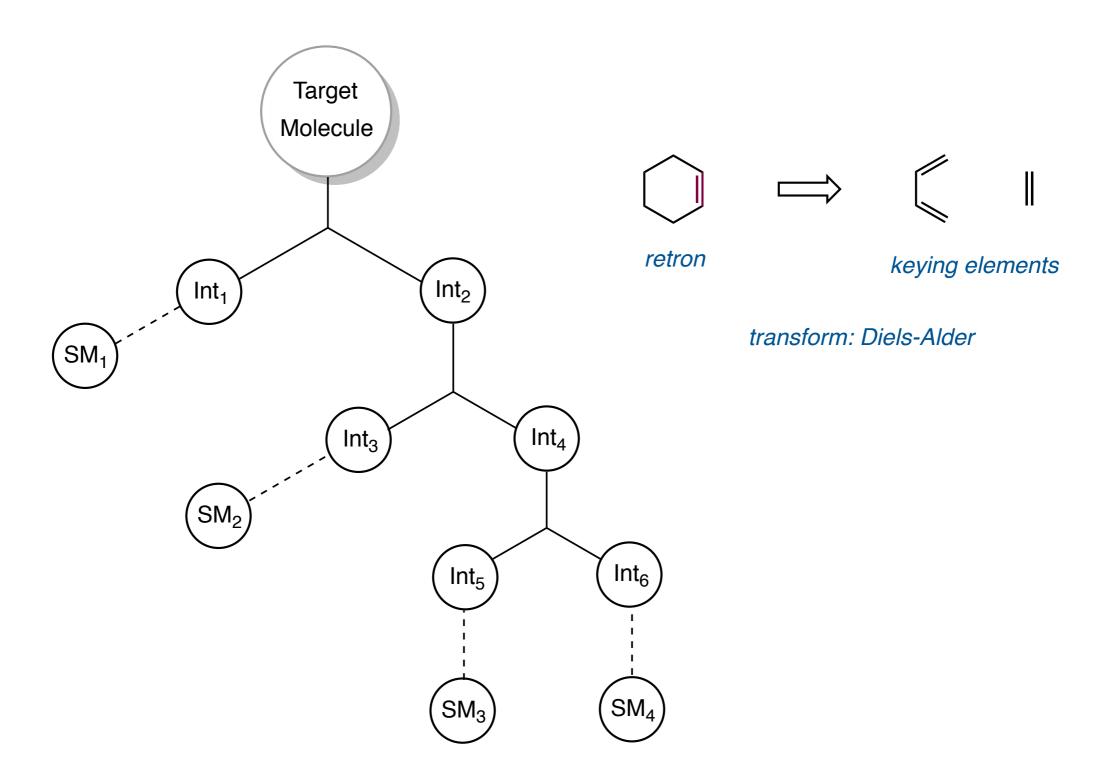
Development and Conceptualization of Retrosynthetic Analysis

"By the end of this course I will be able to look at all of your retrosyntheses and know which one of you produced it. You will all develop your own unique and recognizable style over the next few months."

-Paul Reider, Graduate Synthesis

Common trend: Modern organic chemists have unique retrosynthetic strategies rendering their syntheses easily recognizable to the well-read practitioner of organic chemistry

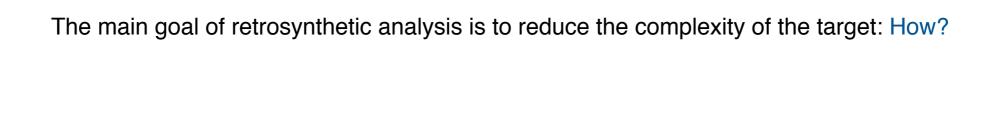
Development and Conceptualization of Retrosynthetic Analysis


"Retrosynthetic analysis is a problem-solving technique for transforming the structure of a synthetic target (TGT) molecule to a sequence of progressively simpler structures along a pathway which ultimately leads to simple or commercially available starting materials for chemical synthesis."

- E. J. Corey, Harvard University
 - MIT 1945–1950, John Sheehan
 - Appointed as Instructor at UIUC at age 22
 - Earned professorship at UIUC at age 27
 - Moved to Harvard in 1959
- Nobel Prize in Chemistry 1990
- Detailed retrosynthetic analysis and techniques

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 6.

Development and Conceptualization of Retrosynthetic Analysis


Hoffmann, R. W. Elements of Synthetic Planning, Springer-Verlag, Berling Heidelberg, 2009, pp 3–5. Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 6.

Development and Conceptualization of Retrosynthetic Analysis

$$\stackrel{\mathsf{OH}}{\longleftarrow} \stackrel{\mathsf{Me}}{\longleftarrow} \stackrel{\mathsf{Me}}{\longrightarrow} \stackrel{\mathsf{Me}}{\longleftarrow} \stackrel{\mathsf{Me}}{\longleftarrow} \stackrel{\mathsf{Me}}{\longrightarrow} \stackrel{\mathsf{Me}}{\longleftarrow} \stackrel{\mathsf{Me}}{\longrightarrow} \stackrel{\mathsf{Me}}{\longrightarrow} \stackrel{\mathsf{Me}}{\longleftarrow} \stackrel{\mathsf{Me}}{\longrightarrow} \stackrel{\mathsf{$$

Hoffmann, R. W. Elements of Synthetic Planning, Springer-Verlag, Berling Heidelberg, 2009, pp 3–5. Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 6.

decreasing complexity

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 6.

decreasing complexity

The main goal of retrosynthetic analysis is to reduce the complexity of the target: How?

1. The application of powerful transforms:

forming key bonds in the molecular skeleton (i.e. C–C bonds)
aldol, Diels-Alder, intramolecular alkylations, C–H activation, cross couplings
forging stereocenters through substrate control (modernly reagent control)
cascade reactions

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 6.

decreasing complexity

The main goal of retrosynthetic analysis is to reduce the complexity of the target: How?

1. The application of powerful transforms:

forming key bonds in the molecular skeleton (i.e. C–C bonds)
aldol, Diels-Alder, intramolecular alkylations, C–H activation, cross couplings
forging stereocenters through substrate control (modernly reagent control)
cascade reactions

Enquist Jr., J. A.; Stoltz, B. M. Nature, 2008, 453, 1228.

decreasing complexity

The main goal of retrosynthetic analysis is to reduce the complexity of the target: How?

1. The application of powerful transforms:

forming key bonds in the molecular skeleton (i.e. C–C bonds)
aldol, Diels-Alder, intramolecular alkylations, C–H activation, cross couplings
forging stereocenters through substrate control (modernly reagent control)
cascade reactions

2. Lateral movement through a non-simplifying transform

skeletal rearrangements, transpositions, isomerization reactions, epimerizations

decreasing complexity

The main goal of retrosynthetic analysis is to reduce the complexity of the target: How?

1. The application of powerful transforms:

forming key bonds in the molecular skeleton (i.e. C–C bonds)
aldol, Diels-Alder, intramolecular alkylations, C–H activation, cross couplings
forging stereocenters through substrate control (modernly reagent control)
cascade reactions

2. Lateral movement through a non-simplifying transform

skeletal rearrangements, transpositions, isomerization reactions, epimerizations

Wipf, P.; Rector, S. R.; Takahashi, H. J. Am. Chem. Soc., 2002, 124, 14848.

decreasing complexity

The main goal of retrosynthetic analysis is to reduce the complexity of the target: How?

1. The application of powerful transforms:

forming key bonds in the molecular skeleton (i.e. C–C bonds)

aldol, Diels-Alder, intramolecular alkylations, C–H activation, cross couplings forging stereocenters through substrate control (modernly reagent control) cascade reactions

- 2. Lateral movement through a non-simplifying transform skeletal rearrangements, transpositions, isomerization reactions, epimerizations
- 3. Disconnections that actually increase molecular complexity protecting groups, masking groups, activating/deactivating groups, adding functional groups or bonds

decreasing complexity

The main goal of retrosynthetic analysis is to reduce the complexity of the target: How?

- 1. The application of powerful transforms:
 - forming key bonds in the molecular skeleton (i.e. C–C bonds)
 aldol, Diels-Alder, intramolecular alkylations, C–H activation, cross couplings
 forging stereocenters through substrate control (modernly reagent control)
 cascade reactions
- Lateral movement through a non-simplifying transform
 skeletal rearrangements, transpositions, isomerization reactions, epimerizations
- 3. Disconnections that actually increase molecular complexity protecting groups, masking groups, activating/deactivating groups, adding functional groups or bonds

guanacastepene E

Shipe, W. D.; Sorensen, E. J. J. Am. Chem. Soc., 2006, 128, 7025.

Classes of Retrosynthetic Disconnections

Transform-Based

look-ahead to powerfully simplifying transform or tactic

i.e. the "Key Step"

Structure-Goal

directed at the structure of a potential intermediate or SM

i.e. the branch point

Topological Strategies

strategic analysis of correlated bond disconnections

i.e. rearrangements and network analysis

Stereochemical Strategies

retrosynthetic strategy which clears stereocenters with either mechanism or substrate control

most common in modern synthesis

Functional Group-Based Strategies

reduction in molecular complexity based on the interchange, installation and removal of functional groups

"redox relay", directing groups, heterocycle formation

Acyclic Systems

What to disconnect and what to preserve

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 38.

Acyclic Systems

What to disconnect and what to preserve

Disconnect

to make symmetrical fragments

C–X bonds (C–heteroatom, esters, amides, etc)

either E or Z double bonds

1-3 bonds away from functional groups

bonds that attach rings to chains (produce the largest fragment)

Preserve

building block groups (alkyl, aryl)

remote stereocenters (more than 3C is remote)

skeletal bonds proximal to remote stereocenters

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 38.

Acyclic Systems

What to disconnect and what to preserve

Disconnect

to make symmetrical fragments

C–X bonds (C–heteroatom, esters, amides, etc)

either E or Z double bonds

1-3 bonds away from functional groups

Preserve

building block groups (alkyl, aryl)

remote stereocenters (more than 3C is remote)

skeletal bonds proximal to remote stereocenters

bonds that attach rings to chains (produce the largest fragment)

Wittig

$$(CH_2)_3CO_2H$$
 C_5H_{11}
 OH
 OH

Corey, E. J.; Mann, J. J. Am. Chem. Soc. 1973, 95, 6832.

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 38.

Thursday, January 9, 14

Ring-Bonds in Isolated Rings

What to disconnect and what to preserve

Disconnect

to make symmetrical fragments

C–X bonds (C–heteroatom, esters, amides, etc)

easily formed rings (lactone, lactam, hemiacetal)

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 38.

Ring-Bonds in Isolated Rings

What to disconnect and what to preserve

Disconnect

to make symmetrical fragments

C-X bonds (C-heteroatom, esters, amides, etc)

easily formed rings (lactone, lactam, hemiacetal)

Falck, J. R.; Yang, Y.-L. *Tetrahedron Lett.* **1984**, *25*, 3563.

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 38.

Disconnection of Fused Rings

What to disconnect and what to preserve

Disconnect

[2+1] and [2+2] retrons

cocyclic bonds (cycloaddition retrons)

heteratom containing rings (lactones, lactam, ketal)

fused rings with exendo bonds (cation- π -cyclizations)

Preserve

building block rings (aryl)

bonds that make ≥7 membered rings

skeletal bonds proximal to remote stereocenters

bonds that make stereocenters

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 39.

Disconnection of Fused Rings

What to disconnect and what to preserve

Disconnect

[2+1] and [2+2] retrons

cocyclic bonds (cycloaddition retrons)

heteratom containing rings (lactones, lactam, ketal)

fused rings with exendo bonds (cation- π -cyclizations)

Preserve

building block rings (aryl)

bonds that make ≥7 membered rings

skeletal bonds proximal to remote stereocenters

bonds that make stereocenters

Chapman, O. L.; Engel, M. R.; Springer, J. P.; Clardy, J. C. *J. Am. Chem. Soc.* **1971**, *93*, 6696. Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 41.

Disconnection of Bridged Rings

What to disconnect and what to preserve

Disconnect

exendo bonds in 4–7 membered rings

C-heteratom bonds preferentially over C-C bonds

bonds that contain the most bridgehead atoms (network analysis)

Preserve

bridges that if disconnected yield ≥7 membered rings

bonds that would yield medium size rings

bonds that yield pendant chains

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 42.

Disconnection of Bridged Rings

What to disconnect and what to preserve

Disconnect

exendo bonds in 4–7 membered rings

C-heteratom bonds preferentially over C-C bonds

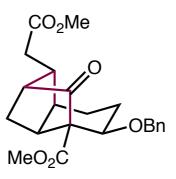
bonds that contain the most bridgehead atoms (network analysis)

Preserve

bridges that if disconnected yield ≥7 membered rings

bonds that would yield medium size rings

bonds that yield pendant chains

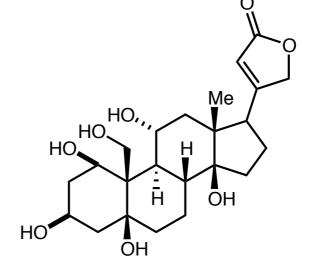

en route to longifolene

McMurry, J. E.; Isser, S. J. J. Am. Chem. Soc., 1972, 94, 7132.

Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis, John Wiley & Sons, New York, 1995, pp 42.

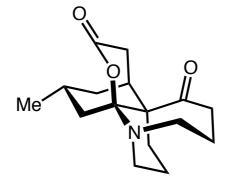
Applied Strategies in Retrosynthetic Analysis

Topological



Phragmalin-type Limonoids Sarpong Group, Berkeley

Transform-Based


(–)-Curvularin Stoltz Group, Caltech

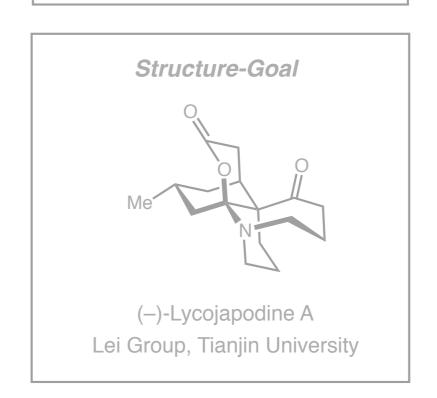
Functional Group-Based

Ouabagenin Baran Group, Scripps

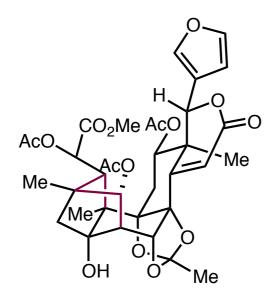
Structure-Goal

(–)-Lycojapodine A Lei Group, Tianjin University

Applied Strategies in Retrosynthetic Analysis


Topological

$$CO_2Me$$
 O
 OBn
 MeO_2C


Phragmalin-type Limonoids Sarpong Group, Berkeley

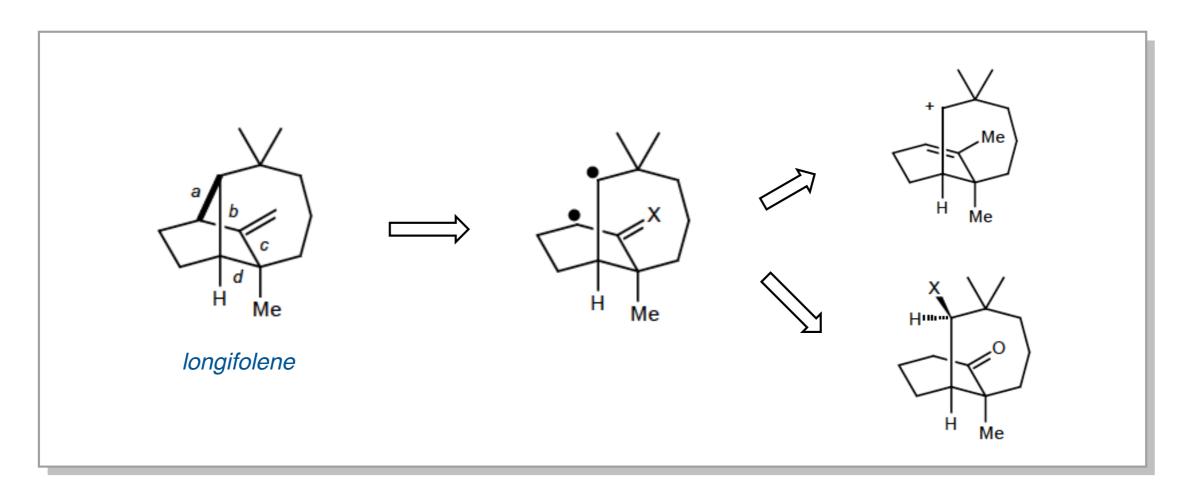
Transform-Based OH OH O''Me (-)-Curvularin Stoltz Group, Caltech

Functional Group-Based HO HO OH Ouabagenin Baran Group, Scripps

Utilizing Network Analysis: a topological strategy

Xyloccensin O phragmalin-type limonoid

- potent anti-cancer, antibiotic, anti-inflammatory properties
- highly oxygenated triterpenoid
- key challenge is synthesis of the carbocyclic core

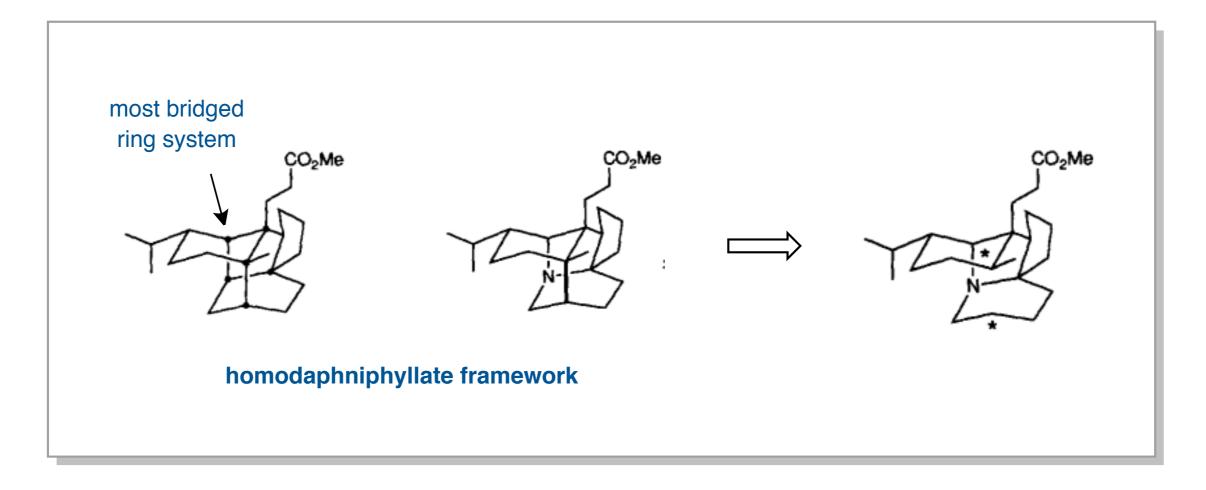


octahydro-1H-2,4-methanoindene core

Utilizing Network Analysis: a topological strategy

Guiding Principles of Network Analysis

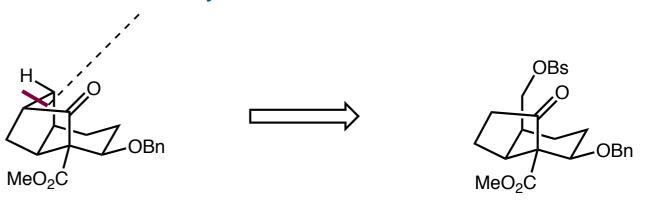
- in general: it is easier to synthesis fused rings that bridged systems
- identify the bonds that are made to the most bridged system
- retrosynthetic removal of these bonds will lead to the most simple keying element



Corey, E. J.; Ohno, M., Mitra, R. B.; Vatakancherry, P. A. J. Am. Chem. Soc. 1964, 86, 487.

Utilizing Network Analysis: a topological strategy

Guiding Principles of Network Analysis


- in general: it is easier to synthesis fused rings that bridged systems
- identify the bonds that are made to the most bridged system
- retrosynthetic removal of these bonds will lead to the most simple keying element

Heathcock, C. Angew. Chem. Int. Ed., 1992, 31, 665.

Retrosynthetic Analysis

intermolecular alkylation

Diels-Alder

conformer

Diels-Alder Approach

82% over 3 steps

Intramolecular Alkylation

entry	conditions	result
1	KHMDS (2 equiv), THF, -78 °C to rt	decomposition
2	KHMDS (1.1 equiv), THF, -78 °C to rt	14 (38-84%)
3	KHMDS (1.1 equiv), TBAI (1 equiv) THF/NEt ₃ , -78 °C to rt	14 (74%)

Intramolecular Alkylation

Intramolecular Alkylation

1. DMP, NaHCO₃

$$CH_2Cl_2$$

$$OBn$$

$$CH_2Cl_2$$

$$CH_2Cl_2$$

$$OBn$$

$$CH_2Cl_2$$

$$OBn$$

$$CH_2Cl_2$$

$$OBn$$

$$CH_2Cl_2$$

$$OBn$$

$$OBn$$

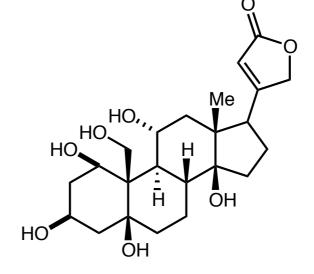
$$OBn$$

$$OBn$$

$$OBn$$

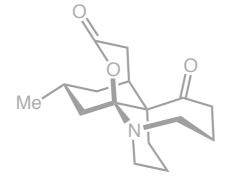
$$OO_2Me$$

Applied Strategies in Retrosynthetic Analysis


Topological

Phragmalin-type Limonoids Sarpong Group, Berkeley

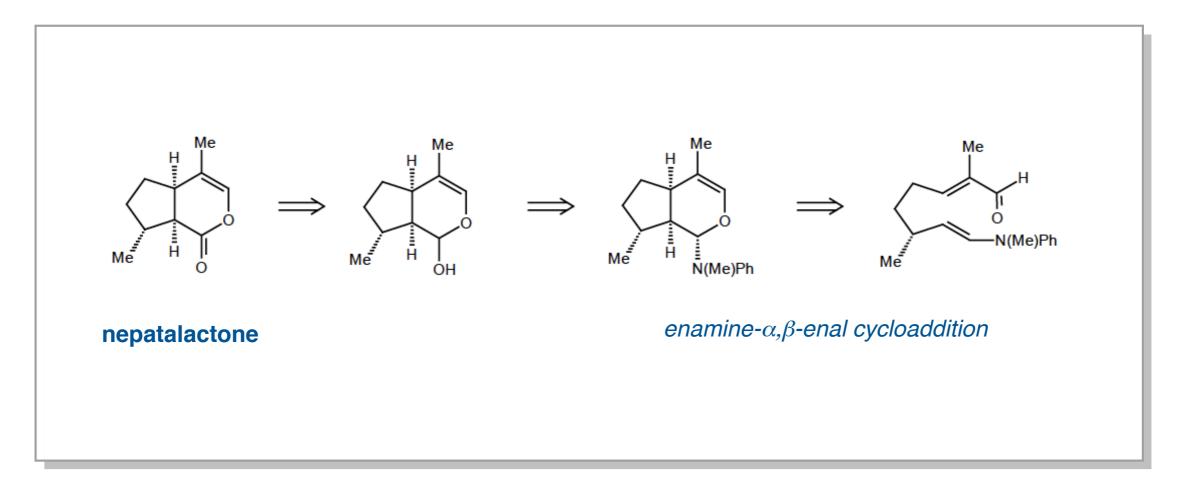
Transform-Based


(–)-Curvularin Stoltz Group, Caltech

Functional Group-Based

Ouabagenin Baran Group, Scripps

Structure-Goal

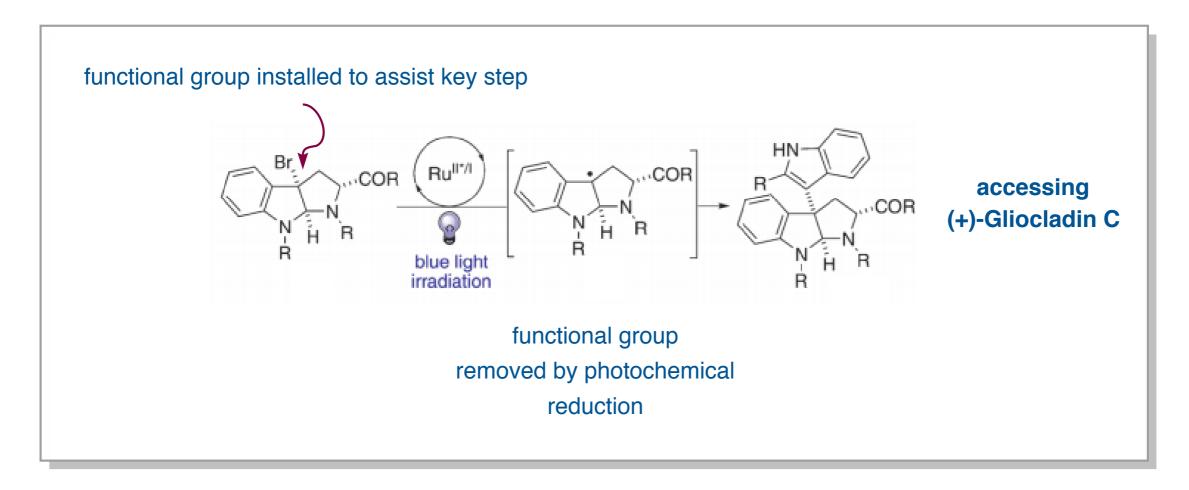

(–)-Lycojapodine A Lei Group, Tianjin University

Total Synthesis of Ouabagenin

a functional group-based approach

Key Features of a Functional Group-based Approach

- functional group in the target directly keys a disconnection
- In the functional group in the target is poised to assist in the installation of a key stereocenter
- often times installed and later removed in order to enable a key transform (overbred intermediate)
- may extend to modern photoredox radical chemistry, traceless directing groups, C-H activation


Clark, K. J.; Fray, G. I.; Jaeger, R. H.; Robinson, R. Tetrahedron, 1959, 6, 217.

Total Synthesis of Ouabagenin

a functional group-based approach

Key Features of a Functional Group-based Approach

- functional group in the target directly keys a disconnection
- In the functional group in the target is poised to assist in the installation of a key stereocenter
- often times installed and later removed in order to enable a key transform (overbred intermediate)
- may extend to modern photoredox radical chemistry, traceless directing groups, C-H activation

Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem. Int. Ed. 2011, 50, 9655.

Total Synthesis of Ouabagenin

a functional group-based approach

Key Features of a Functional Group-based Approach

- functional group in the target directly keys a disconnection
- functional group in the target is poised to assist in the installation of a key stereocenter
- often times installed and later removed in order to enable a key transform (overbred intermediate)
- may extend to modern photoredox radical chemistry, traceless directing groups, C-H activation

LeBold, T. P.; Wood, J. L.; Deitch, J.; Lodewyk, M. W.; Tantillo, D. J.; Sarpong, R. Nat. Chem., 2012, 5, 126.

retrosynthetic analysis

LeBold, T. P.; Wood, J. L.; Deitch, J.; Lodewyk, M. W.; Tantillo, D. J.; Sarpong, R. Nat. Chem., 2012, 5, 126.

a functional group-based approach

a functional group-based approach

a functional group-based approach

Norrish Type 2

adrenosterone

55% over two steps

a functional group-based approach

50% over 3 steps

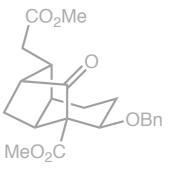
a functional group-based approach

$$H_2O_2$$
 H_2O_2
 H_2O_3
 H_2O_4
 H_2O_5
 H_2O_5
 H_2O_5
 H_2O_6
 H_2O_7
 H_2O_8
 H

a functional group-based approach

a functional group-based approach

a functional group-based approach

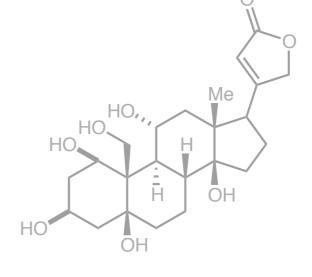

a functional group-based approach

ouabagenin

20 steps from andrenosterone

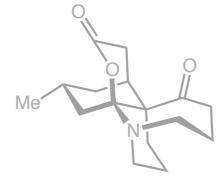
Applied Strategies in Retrosynthetic Analysis

Topological



Phragmalin-type Limonoids Sarpong Group, Berkeley

Transform-Based


(-)-Curvularin Stoltz Group, Caltech

Functional Group-Based

Ouabagenin Baran Group, Scripps

Structure-Goal

(–)-Lycojapodine A Lei Group, Tianjin University

A Transform-Based Approach

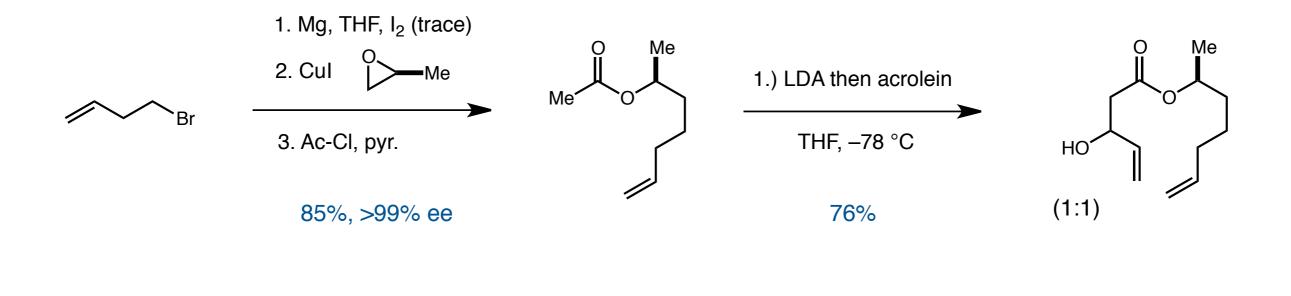
Key Features of a Transform-Based Approach

- in general: the *late-stage* key-step
- look-ahead to apply a highly simplifying synthetic strategy
- often cascades, rearrangements, transformations which assemble multiple C–C bonds

Corey, E. J.; Ohno, M., Mitra, R. B.; Vatakancherry, P. A. J. Am. Chem. Soc. 1964, 86, 487.

A Transform-Based Approach

Key Features of a Transform-Based Approach


- in general: the *late-stage* key-step
- look-ahead to apply a highly simplifying synthetic strategy
- often cascades, rearrangements, transformations which assemble multiple C–C bonds

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Werthermann, L.; Johnson, W. S.; Proc. Nat. Acad. Sci., 1970, 67, 1465.

Retrosynthetic Analysis

preparation of the β -ketolactone

HMDS, THF 70 °C;

Grubbs 3 (10 mol%)

PhH, reflux;

1 N HCl, THF

57%

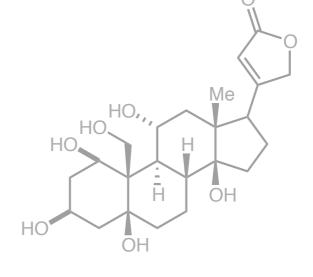
92% over 2 steps

Lin, W.; Zercher, C. K.; J. Org. Chem., 2007, 72, 4390.

Total Synthesis of (–)-Curvularin Key Step

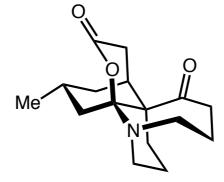
Total Synthesis of (–)-Curvularin Key Step

Applied Strategies in Retrosynthetic Analysis


Topological

Phragmalin-type Limonoids Sarpong Group, Berkeley

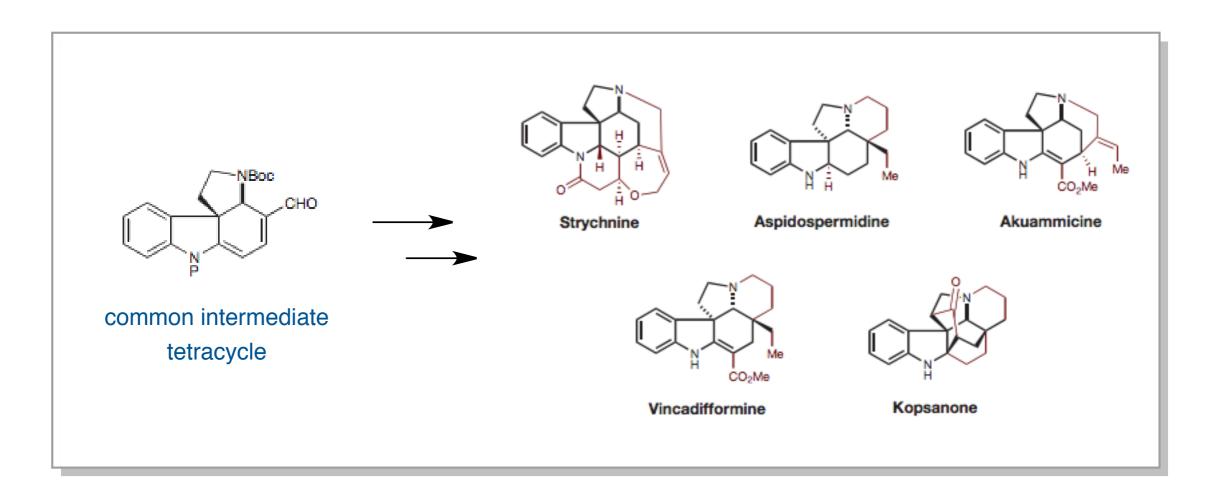
Transform-Based


(–)-Curvularin Stoltz Group, Caltech

Functional Group-Based

Ouabagenin Baran Group, Scripps

Structure-Goal



(-)-Lycojapodine A Lei Group, Tianjin University

A Structure-Goal Approach

Key Features of a Structure-Goal Approach

- Implemented when a large number of target structures are desired (collective synthesis)
- bulk of synthetic strategy relies on the synthesis of a highly simplifying intermediate
- allows the implementation of multiple retrosynthetic techniques

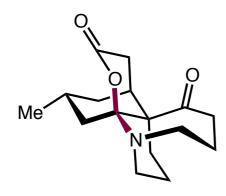
Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature, 2011, 475, 183.

A Structure-Goal Approach

Key Features of a Structure-Goal Approach

- Implemented when a large number of target structures are desired (collective synthesis)
- bulk of synthetic strategy relies on the synthesis of a highly simplifying intermediate
- allows the implementation of multiple retrosynthetic techniques

Fieser, L. F.; Fieser, M. Steroids Reinhold Publishing, New York, 1959. pp 645–659.


A Structure-Goal Approach

Key Features of a Structure-Goal Approach

- Implemented when a large number of target structures are desired (collective synthesis)
- bulk of synthetic strategy relies on the synthesis of a highly simplifying intermediate
- allows the implementation of multiple retrosynthetic techniques

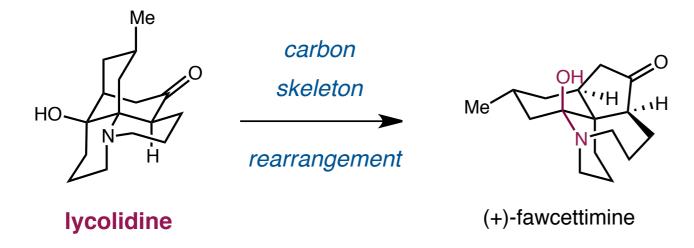
Fieser, L. F.; Fieser, M. Steroids Reinhold Publishing, New York, 1959. pp 645–659.

A Structure-Goal Approach

(–)-Lycojapodine A fawcettimine-type alkaloid

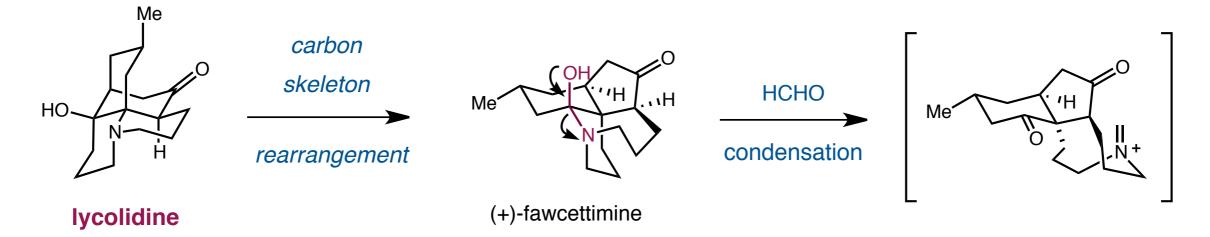
- more than 250 Lycopodium alkaloids have been characterized
- contains a unique $6/_6/_6/_7$ tetracyclic skeleton
- unprecedented carbinolamine lactone motif
- biosynthesis suggests that many natural products can be accessable through a common intermediate

(+)-fawcettimine

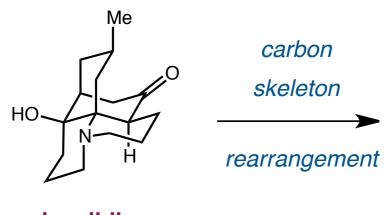

(+)-fawcettidine

(+)-lycoflexine

(+)-alopecuridine


Li, H.; Wang, X.; Hong, B.; Lei, X. J. Org. Chem., 2013, 78, 800.

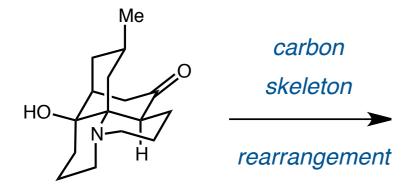
simplified biogenesis


biosynthetic common intermediate

simplified biogenesis

biosynthetic common intermediate

simplified biogenesis

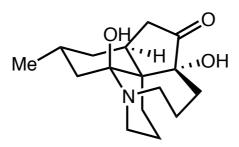

lycolidine

biosynthetic common intermediate

(+)-fawcettimine

(+)-lycoflexine

simplified biogenesis

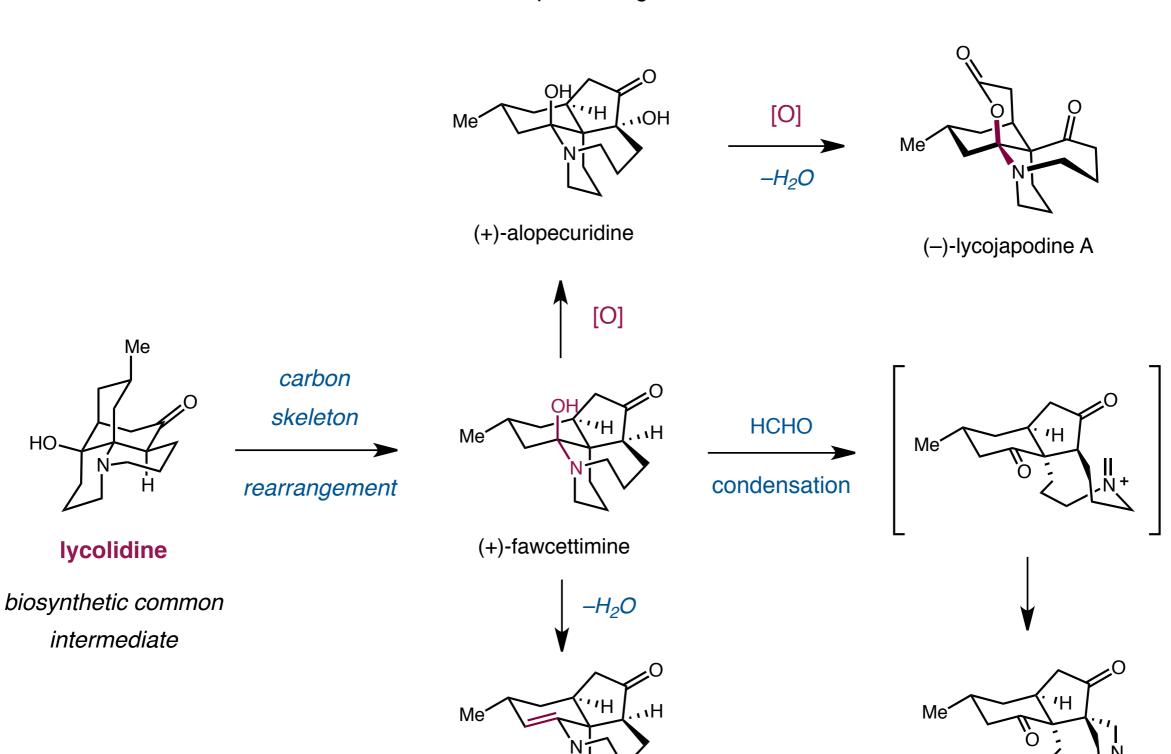


lycolidine

biosynthetic common intermediate

(+)-lycoflexine

simplified biogenesis

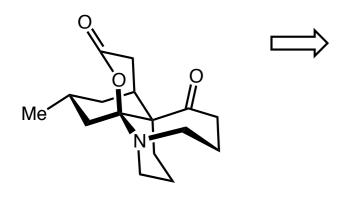

(+)-alopecuridine

lycolidine

biosynthetic common intermediate

(+)-lycoflexine

simplified biogenesis

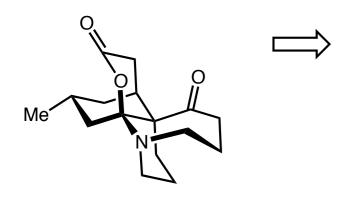

(+)-fawcettidine

(+)-lycoflexine

Thursday, January 9, 14

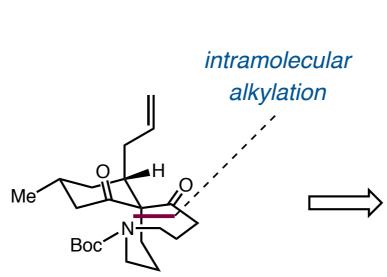
retrosynthetic analysis

(+)-fawcettimine



(-)-Lycojapodine A

(+)-lycoflexine


retrosynthetic analysis

(+)-fawcettimine

(–)-Lycojapodine A

(+)-lycoflexine

proposed common

intermediate

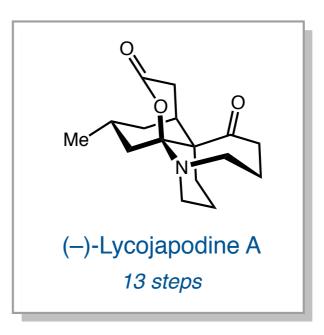
preparing the common intermediate

94%

1. collidine, MsCl
$$CH_2CI_2$$
, 4 °C

2. DMP, CH_2CI_2

80% over 2 steps


preparing the common intermediate

synthesis of (+)-alopecuridine

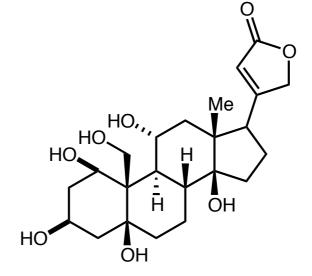
synthesis of (+)-alopecuridine and (-)-lycojapodine A

Li, H.; Wang, X.; Hong, B.; Lei, X. J. Org. Chem., 2013, 78, 800.

synthesis of (+)-alopecuridine and (-)-lycojapodine A

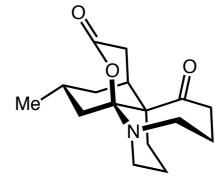
Li, H.; Wang, X.; Hong, B.; Lei, X. J. Org. Chem., 2013, 78, 800.

Applied Strategies in Retrosynthetic Analysis


Topological

Phragmalin-type Limonoids Sarpong Group, Berkeley

Transform-Based


(–)-Curvularin Stoltz Group, Caltech

Functional Group-Based

Ouabagenin Baran Group, Scripps

Structure-Goal

(–)-Lycojapodine A Lei Group, Tianjin University