The Career Of Daniel G. Nocera

Jeff Van Humbeck - MacMillan Group Meeting

Daniel G. Nocera

From Dead–Head to Whiz–Kid

Dropped out of high school to follow Grateful Dead*
B.A. – Rutgers, 1979
Ph. D. – Caltech, 1984. Supervisor: Harry Gray
Assistant Prof. – Michigant State, 1983
Professor – M.I.T., 1997
W. M. Keck Professor of Energy – M.I.T., 2002

*Confirmed by multiple sources

Scope of Review

Photochemical Probes

Tyrosine Photooxidation

In Vitro Quantum Dots

Fluorescence Detection (pH, etc.)

Scope of Review

Chemistry and Magnetism of Spin Frustration

Metal–Organic Frameworks

Purely Inorganic

A Wide Career Arc

Cotton, F. A.; Nocera, D. G. *Acc. Chem. Res.* **2000**, *33*, 483. Rosenthal, J.; Nocera, D. G. *Acc. Chem. Res.* **2007**, *40*, 543.

Nature of the Two–Electron Bond

Cotton, F. A.; Nocera, D. G. Acc. Chem. Res. 2000, 33, 483.

Relative Energy and Distance

Cotton, F. A.; Nocera, D. G. Acc. Chem. Res. 2000, 33, 483.

"... it is central to the concept of scientific research that all theoretical results, however little reason there might be to doubt their correctness, ought to be tested experimentally."

Cotton, F. A.; Nocera, D. G. Acc. Chem. Res. 2000, 33, 483.

Mission: Impossible

Molecular Tweezers Do Not Exist

A Crucial Twist

Rotation of Orbitals Gives Same Effect

A Crucial Twist

Rotation of Orbitals Gives Same Effect

Largest twist of a π–bond only 40°: Leuf, W.; Reese, R. *Top. Stereochem.* **1991**, *20*, 231.

40°: Perfect For Beers and δ *–Bonds*

■ 40° Twist Sufficient to Nullify δ–Bond

Triple Bond Unaffected

Bond Length Change <3%

40°: Perfect For Beers and δ –Bonds

■ 40° Twist Sufficient to Nullify δ–Bond

Triple Bond Unaffected

Bond Length Change <3%

Simple Metal δ -Bonds are Eclipsed

Bidentate Phosphine Torque

Varying Chain Length Causes Twist

Campbell, F. L.; Cotton, F. A.; Powell, G. L. Inorg. Chem. 1984, 24, 177.

Bidentate Phosphine Torque

■ Varying Chain Length Causes Twist

Campbell, F. L.; Cotton, F. A.; Powell, G. L. Inorg. Chem. 1984, 24, 177.

Crucial Evidence Lacking

Multielectron Excited States

Nocera Enters the Mix

Engebretson, D.S.; Zaleski, J. M.; Lero, G. E.; Nocera, D. G. Science 1994, 265, 759.

Multielectron Excited States

Observation of Zwitterionic State

Engebretson, D.S.; Zaleski, J. M.; Lero, G. E.; Nocera, D. G. Science 1994, 265, 759.

Multielectron Excited States

Observation of Zwitterionic State

"...the zwitterionic excited-state manifold has important ramifications on chemical reactivity owing to the pairing of two electrons on one center and two holes on an adjacent one... zwitterionic states may prove to be critical intermediates in strategies to effect multielectron transformations"

Engebretson, D.S.; Zaleski, J. M.; Lero, G. E.; Nocera, D. G. Science 1994, 265, 759.

"...the zwitterionic excited-state manifold has important ramifications on chemical reactivity owing to the pairing of two electrons on one center and two holes on an adjacent one... zwitterionic states may prove to be critical intermediates in strategies to effect multielectron transformations"

Engebretson, D.S.; Zaleski, J. M.; Lero, G. E.; Nocera, D. G. Science 1994, 265, 759.

Is this true?

Isn't this limited to NdYAG Laser Chemistry? (No)

Accessing Zwitterionic State

■ Singlet Excited State Has (Large) Zwitterionic Character

 ΔW = Bond Strength (essentially)

2K = Exchange Energy $X' + X' \longrightarrow X^+ + X^-$

What happens when bond is very weak?

Cotton, F. A.; Nocera, D. G. Acc. Chem. Res. 2000, 33, 483.

Accessing Zwitterionic State

Singlet Excited State Has (Large) Zwitterionic Character

Cotton, F. A.; Nocera, D. G. Acc. Chem. Res. 2000, 33, 483.

Design Plan

Nocera, D. G. Acc. Chem. Res. 1995, 28, 209.

Dimolybdenum Phosphates

Proof of Concept

Chang, I. J.; Nocera, D. G. Inorg. Chem. 1989, 28, 4309.

Dimolybdenum Phosphates

Proof of Concept

Chang, I. J.; Nocera, D. G. Inorg. Chem. 1989, 28, 4309.

Dimolybdenum in Acid

Early Hydrogen Production

Molybdenum subject to same disproportionation

UV excitation required ($\pi^* < -\pi$)

Chang, I. J.; Nocera, D. G. J. Am. Chem. Soc. 1987, 109, 4901.

Consistent Problems

Catalyst Disproportionation

Independent (Though Coordinated) Reactivity

Chang, I. J.; Nocera, D. G. Inorg. Chem. 1989, 28, 4309.

Photooxidative Addition

Reaction at Single Metal Center

No reaction in dark Radical reaction ruled out

Partigianoni, C. M.; Nocera, D. G. Inorg. Chem. 1990, 29, 2033.

Photooxidative Addition

Reaction at Single Metal Center

No reaction in dark Radical reaction ruled out

Stabilization of Zwitterionic Intermediate

Partigianoni, C. M.; Nocera, D. G. Inorg. Chem. 1990, 29, 2033.

Ground–State Mixed Valency

Analogous Exicted State Reativity?

Identical metal centers tend to react by 1e⁻ each

Nocera, D. G. Acc. Chem. Res. 1995, 28, 209.

Ground–State Mixed Valency

Analogous Exicted State Reativity?

Nocera, D. G. Acc. Chem. Res. 1995, 28, 209.

Crucial Ligand Set

■ Mixed Valence Complexes (With Mⁿ−Mⁿ⁺²) Rare

Induces Spontaneous Disproportionation

Dulebohn, J. I.; Ward, D. L.; Nocera, D. G. J. Am. Chem. Soc. 1988, 110, 4054.

DPFMA

Electronic Communication

Methylamine linker donates lone pair towards ${\rm Rh}^{\rm II}$

 PF_2 groups a Rh^0 very $\pi\text{-acidic},$ strong backbonding

Confirmed by crystal structure

Dulebohn, J. I.; Ward, D. L.; Nocera, D. G. J. Am. Chem. Soc. 1990, 112, 2969.

DPFMA

Electronic Communication

Methylamine linker donates lone pair towards Rh^{II}

 PF_2 groups a Rh^0 very π -acidic, strong backbonding

Confirmed by crystal structure

Bis–Oxidized and Bis–Reduced Products Accessible

NB: Actual geometry is twisted

Dulebohn, J. I.; Ward, D. L.; Nocera, D. G. J. Am. Chem. Soc. 1990, 112, 2969.

X₂ Reductive Elimination

■ Four–Electron Rh₂ Series

Heyduk, A. F.; Macintosh, A. M.; Nocera, D. G. J. Am. Chem. Soc. 1999, 121, 5023.

X₂ Reductive Elimination

■ Four–Electron Rh₂ Series

Rh–X Typically Dead End

Heyduk, A. F.; Macintosh, A. M.; Nocera, D. G. J. Am. Chem. Soc. 1999, 121, 5023.

Gray, H. B.; Maverick, A. W. Science, 1981, 214, 1201.

Photocatalytic H₂ Production

Heyduk, A. F.; Nocera, D. G. Science, 2001, 293, 1639.

Iridium Analogues

Slightly Altered Ligand

Incredible Protonation Characteristics

Water Splitting at Ir

■ Reaction With H₂O To Deliver Ir–H

Veige, A. S.; Nocera, D. G. Chem. Comm. 2004, 1958.

Could advantages of separate metals (e.g. Rh and Ir) be combined into a single catalyst?

Pt–Au Bimetallics

Increased Halogen Elimination at Au

Cook, T. R.; Esswein, A. J.; Nocera, D. G. J. Am. Chem. Soc. 2007, 129, 10094.

■ Trap–Free Hydrogen Production

Cook, T. R.; Surendranath, Y.; Nocera, D. G. J. Am. Chem. Soc. 2009, 131, 28.

Halogen Elimination Couples No Protons

PCET Often Lowest Energy Path

Maximum Power With O₂ Reduction

Want To Avoid Semi–Reduced Pathways

Collman, J. P.; Wagenknecht, P. S.; Hutchinson, J. E. Angew. Chem. Int. Ed. 1994, 33, 1537.

Gersten, S. W.; Samuels, G. J.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4029.

Bisporphyrin Electroreduction

■ Introduced Late 70s by Collman, Kagan, Ogoshi and Chang

Used as Co complex deposited on C electrode

Collman, J. P.; Wagenknecht, P. S.; Hutchinson, J. E. Angew. Chem. Int. Ed. 1994, 33, 1537.

Significant Change in Cleft Size

DPD

Chang, C. J.; Deng, Y.; Heyduk, A. F.; Chang, C. K.; Nocera, D. G. Inorg. Chem. 2000, 39, 959.

Significant Change in Cleft Size

DPX

DPD

Chang, C. J.; Deng, Y.; Heyduk, A. F.; Chang, C. K.; Nocera, D. G. Inorg. Chem. 2000, 39, 959.

10,000x Greater Rate

Chang, C. J.; Baker, E. A.; Pistorio, B. J.; Deng, Y.; Loh, Z.-H.; Miller, S. E.; Carpenter, S. D.; Nocera, D. G. Inorg. Chem. 2002, 41, 3102.

'Pacman' Effect

Effective in Catalytic Oxidation

Pistorio, B. J.; Chang, C. J.; Nocera, D. G. J. Am. Chem. Soc. 2002, 124, 7884.

Recapture Ability

Deng, Y.; Chang, C. J.; Nocera, D. G. J. Am. Chem. Soc. 2000, 122, 410.

Picosecond Laser Observations

■ Oxyl Liftime ≠ Reactivity

Hodgkiss, J. M.; Chang, C. J.; Pistorio, B. J.; Nocera, D. G. Inorg. Chem. 2003, 42, 8270.

Picosecond Laser Observations

■ Oxyl Liftime ≠ Reactivity

ΔD = 0.208Å	∆D = 2.424Å	∆D = 4.271Å
$\tau = 1.26 \text{ ns}$	$\tau = 1.27 \text{ ns}$	$\tau = 1.36 \text{ ns}$
RR = 1	RR = 100	RR = 10,000

Hodgkiss, J. M.; Chang, C. J.; Pistorio, B. J.; Nocera, D. G. Inorg. Chem. 2003, 42, 8270.

DOES NOT INCLUDE PROTON TRANFER

Co–Catalyzed O₂ Reduction

Reduction at +0.3V (Ag/AgCl)

H₂O vs. H₂O₂ Selectivity

Ox = +0.28V

Ox = +0.31V

Ox = +0.33V

Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013.

Co–Catalyzed O₂ Reduction

Reduction at +0.3V (Ag/AgCl)

H₂O vs. H₂O₂ Selectivity

Ox = +0.28V	Ox = +0.31V	Ox = +0.33V
% H ₂ O = 72	% H ₂ O = 52	% H ₂ O = 80

KEY IS BALANCING PROTON INVENTORY

Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013.

Product Selectivity

Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013.

DFT Calculations

Stunning Difference

Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013.

Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013.

Co-Reduction Cycle

Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013.

Co-Reduction Cycle

Chang, C. J.; Loh, Z.-H.; Shi, C.; Anson, F. C.; Nocera, D. G. J. Am. Chem. Soc. 2004, 126, 10013.

Second Pillar Site

Why Two Cobalt Porphyrins?

Induce protonation of bound superoxide

Chng, L. L.; Chang, C. J.; Nocera, D. G. Org. Lett. 2003, 5, 2421.

Second Pillar Site

Why Two Cobalt Porphyrins?

- Induce protonation of bound superoxide
- Hangman Architecture

Chng, L. L.; Chang, C. J.; Nocera, D. G. Org. Lett. 2003, 5, 2421.

Water-Bound

A Crystal Structure Surprise

Crystallographically resolved water

Maintained in solution

Binding energy ~6 kcal

Salen Hangman

Simpler Synthesis

Large increase in synthetic simplicity

Small increase in TON

Liu, S.-Y.; Nocera, D. G. J. Am. Chem. Soc. 2005, 127, 5278.

Yang, J. Y.; Bachmann, J.; Nocera, D. G. J. Org. Chem. 2006, 71, 8706.

Another Mechanistic Twist

Liu, S.-Y.; Soper, J. D.; Yang, J. Y.; Rybak-Akimova, E. V.; Nocera, D. G. Inorg. Chem. 2006, 45, 7572.

Another Mechanistic Twist

Liu, S.-Y.; Soper, J. D.; Yang, J. Y.; Rybak-Akimova, E. V.; Nocera, D. G. Inorg. Chem. 2006, 45, 7572.

Co–Coated Electrodes

"Here we report such a catalyst that forms upon oxidative polarization. . . in phosphate buffered water containing Co(II)"

Kanan, M. W.; Nocera, D. G. Science, 2008, 321, 1072.

Subscriber access provided by Princeton University Library

Communication

Solar Water Oxidation by Composite Catalyst/#-FeO Photoanodes

Diane K. Zhong, Jianwei Sun, Hiroki Inumaru, and Daniel R. Gamelin J. Am. Chem. Soc., Article ASAP • DOI: 10.1021/ja9016478 • Publication Date (Web): 08 April 2009 Downloaded from http://pubs.acs.org on April 14, 2009

α –Fe₂O₃ Photoanodes

- Hematite is cheap, available, oxidatively stable
- Absorbs visible light to generate 2.1eV hole/charge combination (>1V overpotential for water oxidation)
- Kinetically, can't oxidize water very well

α –Fe₂O₃ Photoanodes

- Hematite is cheap, available, oxidatively stable
- Absorbs visible light to generate 2.1eV hole/charge combination (>1V overpotential for water oxidation)
- Kinetically, can't oxidize water very well

α –Fe₂O₃ Photoanodes

- Hematite is cheap, available, oxidatively stable
- Absorbs visible light to generate 2.1eV hole/charge combination (>1V overpotential for water oxidation)
- Kinetically, can't oxidize water very well

Zhong, D. K.; Sun, J.; Inumaru, H.; Gamelin, D. R. J. Am. Chem. Soc. 2009, ASAP.