Immuno-Oncology: Targeting STING

Johannes Diesel

MacMillan Group Meeting

November 18, 2020

"STING Fever"

Company	Agent	Delivery	Program	Stage
Aduro/ Novartis	ADU-S100	IT	Small-molecule STING agonist	Ph1/2
Merck	MK-1454	IT	Small-molecule STING agonist	Ph1/2
Merck	MK-2118	IT/ SubQ	Small-molecule STING agonist	Ph1
Spring Bank	SB11285	IT/ IV	Small-molecule STING agonist	Ph1
GSK	GSK3745417	IV	Small-molecule STING agonist	Ph1
Bristol-Myers Squibb (IFM)	BMS-986301	IT	Small-molecule STING agonist	Ph1
Eisai	E7766	Unknown	Small-molecule STING agonist	Precl/ Disc
Takeda	TAK-676	Unknown	Small-molecule STING agonist	Precl/ Disc
Takeda/ Curadev	CRD5500	Unknown	Small-molecule STING agonist / "amendable to biconjugation as ADC"	Precl/ Disc
Abbvie (Mavupharma)	MAVU-104	Oral	ENPP1 inhibitor	Precl/ Disc
Synlogic	SYNB1891	IT	E. coli engineered to produce high levels of the STING agonist c-di-GMP	Precl/ Disc
Spring Bank	SB11325/ 11396	IV	Antibody conjugated STING agonists (Targets Unknown)	Precl/ Disc
Trillium Therapeutics	TTI-10001	Unknown	Small-molecule STING agonist	Precl/ Disc
Codiak Biosciences	exoSTING	Unknown	Engineered exosome	Precl/ Disc
Venn Therapeutics	VTX-001	IT	Adenovirus that produces the bacterial STING agonist c-di-GMP	Precl/ Disc
iTeos Therapeutics	Unnamed	IV	Small-molecule STING pathway activators	Precl/ Disc
Nimbus Therapeutics	Unnamed	Unknown	Small-molecule STING agonist	Precl/ Disc
Bicycle Therapeutics	Unnamed	Systemic	Bicycle conjugate	
Selvita	Unnamed	Unknown	Small-molecule to activate STING	Precl/ Disc
Stimunity	Unnamed	Unknown	Vectorized cGAMP – "virus like particle"	Precl/ Disc
StingInn	Unnamed	Unknown	Small-molecule STING agonists/ nucleic acid-based STING activators	Precl/ Disc
StingInn/ Vyriad	Unnamed	Unknown	Oncolytic viruses encoding STING pathway activators	Precl/ Disc
Venenum Biodesign	Unnamed	Unknown	Small-molecule STING agonist	Precl/ Disc

- cGas-STING Pathway
- Structure of the STING Protein and the cGAMP-STING Complex
- Cyclic Dinucleotides (CDNs) as unique class of secondary messengers
- STING Agonists
 - CDN STING agonists
 - non-CDN STING agonists

- STING agonists have large potential as effective anti/tumor agent
- most promising are combination therapies with checkpoint inhibitors

STING protein forms a V-shaped homodimer consisting of cytoplasmic *C*-terminal **ligand binding domain (LBD)** and *N*-teminal transmembrane domain. Downstream signalling depends on *C*-terminal tail region. Ser366 is phosphorylated by TBK1 to form STING-IRF3 complex

Two distinct binding positions of the asymmetric ligand to the symmetric binding pocket Main binding interactions are with Arg238 via charge reinforced hydrogen bonds to the phosphate groups and nucleobase π-stacking with Tyr167

Cyclic Dinucleotides (CDNs)

2',3'-cGAMP binds STING 100-fold stronger than 3',3'-cGAMP

J. Oost, C. A. Kuttruff, H. Narr 2019 Medicinal Chemistry Reviews, 54, 9.

Rational for difference in total binding energies ΔG_{total} of 2',3'-cGAMP and 3',3'-cGAMP

Binding Energy STING/cGAMP $\Delta G_{total} = \Delta H_{total} - T \Delta S_{total}$ $\Delta S_{total} = \Delta S_{protein} + \Delta S_{ligand} + \Delta S_{water}$ $\Delta S_{ligand} = S_{ligand(bound)} - S_{ligand(free)}$

- $\Delta H_{\text{STING/2',3'-cGAMP}} \sim \Delta H_{\text{STING/3',3'-cGAMP}} \text{ (based on ITC data)}$
- ΔS_{protein} is comaparable as both 2',3'-cGAMP and 3',3'-cGAMP induce the same conformational change (based on X-ray structures)
- the ligands have the same volumes (\sim 520 Å³) hence ΔS_{water} is similar

different binding affinities originate from difference in ΔS_{ligand}

Rational for difference in total binding energies ΔG_{total} of 2',3'-cGAMP and 3',3'-cGAMP

closed equilibrium conformation of 2',3'-cGAMP

STING bound conformation

Rational for difference in total binding energies ΔG_{total} of 2',3'-cGAMP and 3',3'-cGAMP

closed equilibrium conformation of 2',3'-cGAMP

open equibrium conformation of 3',3'-cGAMP

2',3'-cGAMP binding to STING requires significantly less entropy cost $S_{2',3'-cGAMP(free)} \ll S_{3',3'-cGAMP(free)}$

C. Chen et al. PNAS, 2015, 112, 8947.

CDN STING Agonists

Aduro 2',3'-cGAMP analog

Assay: Diffferential Scanning Fluorimetry DSF

- measures stabilization of protein by ligand binding against thermal unfolding
- unfolding temperature is measured by increase of fluorescense of a dye binding to hydrophobic protein parts, which are exposed upon protein unfolding

increased binding affinity
increased cellular uptake
increased metabolic stability

STING WT DSF $\Delta T_{M} = 27.3 \text{ °C}$

F. H. Niesen et al. Nat. Protoc. 2007, 2, 2212.

J. Oost, C. A. Kuttruff, H. Narr 2019 Medicinal Chemistry Reviews, 54, 9.

The Thio Effect

- decreased rate of hydrolysis caused by lower solvent stabilization of the pentavalent charged intermediate
- thio effect is widely applied in RNA-based drug discovery
- stereogenic phosphorus atom results in diastereomer formation

S. C. L. *et al.* Kamerlin *Org. Biomol. Chem.* **2015**, *13*, 5391. A. C. Hengge *et al. J. Org. Chem.* **2005**, *70*, 8437.

CDN STING Agonists

Aduro STING WT DSF $\Delta T_M = 19.2$ °C

Boehringer Ingelheim (locked nucleic acid) STING WT DSF $\Delta T_M = 30.3 \text{ °C}$ "late eluting" diastereomer

GSK

BMS

CDN Synthesis - Jones Protocol

R. A. Jones et al. Org. Lett. 2010, 12, 3269.

CDN Synthesis - Jones Protocol

- protecting group manipulations
- functional group interconversions

R. A. Jones et al. Org. Lett. 2010, 12, 3269.

CDN Synthesis - Baran and BMS Protocol

CDN Synthesis - Baran and BMS Protocol

CDN Synthesis - Baran and BMS Protocol

24%, single diastereomer *previously 4%, stereorandom*

M. D. Altmann *et al. Patent Application* WO2017/027646A1, **2017**.J. Oost, C. A. Kuttruff, H. Narr *2019 Medicinal Chemistry Reviews*, *54*, 9.

CDN STING Agonists

- variety of CDN STING agonists have advanced to clinical trials
- exclusively for solid tumors allowing intratumoral administration
- innovation needed to allow systematic administration to patients with multiple heterogenous tumors
- synthetic small molecules may be advantageous by providing improved permeability and easier synthetic acces

Non-Nucleotide STING Agonists

Amidobenzimidazol (ABZI)

- HTS of small molecules that compete with binding of radiolabeled cGAMP
- ABZI identified with $IC_{50} = 14 \mu mol$
- two molecules ABZI bind to the STING cGAMP binding site

J. M. Ramanjulu et al. Nature, 2018, 564, 439.

Non-Nucleotide STING Agonists

J. M. Ramanjulu et al. Nature, 2018, 564, 439.

Jencks' Principle

linked fragments reflect the **sum of binding energies of two unconnected fragments** if unfavorable interactions of the linker with the protein are avoided and the binding orientation is maintained

W. P. Jencks *Proc. Natl. Acad. Sci.* **1981**, *78*, 4046.J. M. Ramanjulu *et al. Nature*, **2018**, *564*, 439.

Non-Nucleotide STING Agonists

STING lid

Conformational state of STING protein determined by hydrogen deuterium exchange (HDX) MS

J. M. Ramanjulu et al. Nature, 2018, 564, 439.

intravenous administration of diABZI leads to adaptive CD8⁺ T cell response in vivo

Orally available non-nucleotide based STING Agonist

benzothiophene oxobutanoic acid (MSA-2)

B.-S.Pan et al. Science 2020, 564, 439.

Non-Nucleotide STING Agonists

B.-S.Pan et al. Science 2020, 564, 439.

Different administration routes of MSA-2 and effect on MC38 (colon carcinoma) tumor growth

- MSA-2 enhances antitumor activity of anti-PD-1 immune checkpoint inhibitor in tumor models that are poorly responsive to PD-1 blockade
- MSA-2 and anti-PD-1 are synergistic in inhibiting tumor growth
- → both innate and adaptive immune function contribute to STING agonist-driven tumor regression

B.-S.Pan et al. Science 2020, 564, 439.