Reductive Elimination from High-Valent Palladium

Kazunori Nagao MacMillan Group Meeting Why do people focus on Pd^{IV}

C–X Reductive Elimination

Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.

Regioselective C–H Oxidative Functionalization

Isolation of Pd^{IV} Complex

Dick, A. L.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790.

Isolation of Pd^{IV} Complex

Whitefield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142.

Bimetallic Pd^{III} Intermediate

Molecular Orbital of Bimetallic Pd^{III} Complex Pd–Pd bond corresponds to redox state of Pd

Synergistic effect by two Pd metals may facilitate redox transformation.

HOMO

LUMO

Identification of Pd^{III} Dimer and Bimetallic Reductive Elimination

Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.

Identification of Pd^{III} Dimer and Bimetallic Reductive Elimination

Pd^{II}–Pd^{IV} dimer resonance can not surpress the Pd–Pd electronic communication

The RE rate is independent of Cl⁻ and AcO⁻

CI

·Me

Me

Concerted Reductive Elimination

Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.

Catalytic C–H Chlorination

Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.

Computational Study

Bimetallic Reductive Elimination

Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14092.

Mechanistic Studies for C–H Clorination with NCS

Turnover-Limiting Acetate-Assisted Oxidation

C–CI RE product

Nielsen, M. C.; Lyngvi, E.; Schoenbeck. F. *J. Am. Chem. Soc.* **2013**, *135*, 1978. Powers, D. C.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Ritter, T. *J. Am. Chem. Soc.* **2010**, *132*, 14092.

Ar–CF₃ Reductive Elimination from Pd^{II}

Successful Examples of Ar–CF₃ RE from Pd^{II}

Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald S. L. Science 2010, 328, 1679.
Glushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644.
Nielsen, M. C.; Bonney, K. J.; Schoenebeck, F. Angew. Chem. Int. Ed. 2014, 53, 5903.

Ar–CF₃ Reductive Elimination from Pd^{IV}

Nicholas, D. B.; Kampf, J. F.; Sanford M. S. J. Am. Chem. Soc. 2011, 133, 7577.

Ar–CF₃ Reductive Elimination from Pd^{IV}

Wang. X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648.

Isolation of CF₃–Pd^{IV} Intermediate

Nicholas, D. B.; Kampf, J. F.; Sanford M. S. J. Am. Chem. Soc. 2010, 132, 14682.

Reductive Elimination from Isolated CF_3 – Pd^{IV} complex

Increase of [AcO⁻] significantly *slowed* C–CF₃ RE Addition of acidic additive [**TFA**, **TFAA**, **Yb(OTf)**₃] *accelerated* C–CF₃ RE

AcO⁻ dissociative RE Pathway

Catalytic Activity of Isolated CF_3 – Pd^{IV} Complex

Nicholas, D. B.; Kampf, J. F.; Sanford M. S. J. Am. Chem. Soc. 2010, 132, 14682.

Binuclear Pd^{III} or Mononuclear Pd^{IV}

Kinetic study and DFT calculation suggests Reducctive elimination from Pd^{IV}

Powers, D. C.; Lee, E.; Ariafard, A.; Sanford M. S.; Yates, B. F.; Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 12002.

Small Ring Formation

C–F is relatively intert for RE

How about 4-membered ring?

Mei, T.-Q.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806.

Small Ring Formation

Mei, T.-Q.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806.

Construction of Azetidine

He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3.

Construction of Benzazetidine

Synthesis of Benzazetidine

He, G.; Lu, G.; Guo, Z.; Liu, P.; Chen, G. Nat. Chem. 2016, 8, 1131.

Discovery of PhI(DMM)₂

He, G.; Lu, G.; Guo, Z.; Liu, P.; Chen, G. Nat. Chem. 2016, 8, 1131.

Substrate Scope

He, G.; Lu, G.; Guo, Z.; Liu, P.; Chen, G. Nat. Chem. 2016, 8, 1131.

Computational Studies

Construction of Aziridine

McNally, A.; Haffemayer, B; Collins, B. S.; Gaunt, M. Nature 2014, 510, 129.

Computational Studies

 $\Delta G = 6.0 \text{ kcal/mol}$