Ligand-coupling on hypervalent species: Transition metal chemistry without the metal

Literature Presentation

05 April 2023

Benjamin T. Boyle

MacMillan Group Princeton University

Transition metal cross-couplings have transformed chemical synthesis

Transition metals have enabled elusive bond formations

2010 Nobel prize in chemistry

Oxidative addition

Transmetalation

Reductive elimination

Transition metal cross-couplings have transformed chemical synthesis

Transition metals have enabled elusive bond formations

... but can we mimic this reactivity with main group elements

Transition metal chemistry relies on d-orbital participation

"The difference between the common occurrence of oxidative addition in transition metal chemistry and the rare occurrence of this process in organic chemistry contributes to the distinction between the reactivity of transition metal complexes and (organic) molecules."

"Reductive elimination is the reverse of oxidative addition."

Organotransition Metal Chemistry – From Bonding to Catalysis John F. Hartwig

Transition metal chemistry relies on d-orbital participation

Transition metal chemistry relies on d-orbital participation

The curious case of triaryl sulfonium salts

Why are we observing aryl dimerization and what is the mechanism for its formation?

Trost: 1971

The curious case of triaryl sulfonium salts

Potential for ligand exchange means we can't rule out S_NAr pathway

The curious case of triaryl sulfonium salts

^{8:1} selectivity

Direct evidence for reductive coupling at sulfur

Sheppard: 1971 Direct evidence for reductive coupling at sulfur

Sheppard, W. A., J. Am. Chem. Soc. 1971, 93, 5597

LaRochelle, R. W.; Trost, B. M. J. Am. Chem. Soc. 1971, 93, 6077.

Ligand-coupling and reductive elimination

Sulfurane coupling and reductive elimination show remarkable mechanistic similarities

Coupling mechanism was expanded beyond sulfur and termed "ligand-coupling" around 1985 by Shigeru Oae

Sulfurane coupling

Reductive elimination

"In organometallic chemistry, the terms "reductive elimination" and "oxidative addition" have been used to describe many chemical phenomena... most of these reactions can be understood in terms of ligand coupling."

> Ligand-coupling Reactions of Hypervalent Species Shigeru Oae

Ligand-coupling and reductive elimination

Sulfurane coupling and reductive elimination show remarkable mechanistic similarities

Coupling mechanism was expanded beyond sulfur and termed "ligand-coupling" around 1985 by Shigeru Oae

Sulfurane coupling

Reductive elimination

"(Ligand-coupling reaction) is a new type of reaction and is different from widely used reductive elimination, and is unique and specific for hypervalent compounds in general"

> Organo Main Group Chemistry Kin-Ya Akiba

Akiba, K.-Y. Organo Main Group Chemistry; John Wiley & Sons, Inc., 2011.

Ligand-coupling and reductive elimination

Ligand-coupling is distinct from reductive elimination

- Limited to main-group elements
- Requires hypervalency of central atom
 - Concerted coupling process
- Allowed couplings are element and geometry dependent

Finet, J.-P. Ligand Coupling Reactions with Heteroatomic Compounds, 1st ed.; Tetrahedron Organic Chemistry; Elsevier, 1998; Vol. 18.

Accessing hypervalent scaffolds

Hypervalent structures for ligand-coupling are accessed three ways

Accessing hypervalent scaffolds

Hypervalent structures for ligand-coupling are accessed three ways

Hypervalent molecules: formal violation of the octet rule for bonding

3d orbitals are not involved in valence expansion

PPh₅ Pentaphenylphosphorane "10 valence electrons"

SPh₄ Tetraphenylsulfurane "10 valence electrons"

"Far too often have **3d orbitals been invoked as a kind of theoretical** *deus ex machina* to account for facts apparently otherwise inexplicable"

Molecular Orbital Theory of Pentacoordinate Phosphorus Roald Hoffmann

Hypervalent molecules: formal violation of the octet rule for bonding

PPh₅ Pentaphenylphosphorane "10 valence electrons"

SPh₄ Tetraphenylsulfurane "10 valence electrons"

Hypervalent molecules: formal violation of the octet rule for bonding

Apical bond described as distinct from equatorial bonds

Oae, S. Pure and Applied Chemistry 1996, 68, 805.

Hypervalent molecules: formal violation of the octet rule for bonding

Apical bond described as distinct from equatorial bonds... and polarized in comparison

Hypervalent molecules: formal violation of the octet rule for bonding

Apical bond described as distinct from equatorial bonds... and polarized in comparison

Return to normal valency through extrusion of one pair of electrons provides ligand-coupling driving force in the forward direction

Oae, S. Pure and Applied Chemistry 1996, 68, 805.

Three pathways can occur to return to normal valency

Self-decomposition

Ligand-exchange

Ligand-coupling

Wittig reaction pathway

S_N2-like outcome

Reductive coupling

Three pathways can occur to return to normal valency

Ligand-coupling

Reductive coupling

Akiba, K.-Y. Organo Main Group Chemistry; John Wiley & Sons, Inc., 2011.

Ligand-coupling can occur through four mechanistic pathways

Self-decomposition

Ligand-exchange

Ligand-coupling

Wittig reaction pathway

S_N2-like outcome

Reductive coupling

Two pathways compete directly with each other

How can we tune this reactivity?

Reductive coupling

Like transition metals, ligands position around the central atom plays a role in couplings

Like transition metals, ligands orientation around the central atom plays a role in couplings

Trost, B. M.; Arndt, H. C. J. Am. Chem. Soc. 1973, 95, 5288.

Like transition metals, ligands orientation around the central atom plays a role in couplings

Trost, B. M.; Arndt, H. C. J. Am. Chem. Soc. 1973, 95, 5288.

Like transition metals, ligands orientation around the central atom plays a role in couplings

Trost, B. M.; Arndt, H. C. J. Am. Chem. Soc. 1973, 95, 5288.

Presence of π orbitals allows for "forbidden" ligand-couplings to occur

Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202. .

Presence of π orbitals allows for "forbidden" ligand-couplings to occur

Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202. .

Presence of π orbitals allows for "forbidden" ligand-couplings to occur

Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202. .

Presence of π orbitals allows for "forbidden" ligand-couplings to occur

Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202. .

Like transition metals, ligands orientation around the central atom plays a role in couplings

Trost, B. M.; Arndt, H. C. J. Am. Chem. Soc. 1973, 95, 5288.

Ligands on hypervalent species are not frozen in a single position

Ligands can "migrate" between positions on hypervalent species

Orientation for ligands can be manipulated through two rotation processes:

Berry pseudorotation and turnstile processes

Trost, B. M.; Arndt, H. C. J. Am. Chem. Soc. 1973, 95, 5288.

Ligands on hypervalent species are not frozen in a single position

Berry pseudorotation ψ :

allows for apical and equatorial ligands to interconvert

Low barriers of <3 kcal/mol but goes through molecular geometry rearrangement

Does not actually involve rotational motion

Orientation for ligands can be manipulated through two rotation processes:

Berry pseudorotation and turnstile processes

Trost, B. M.; Arndt, H. C. J. Am. Chem. Soc. 1973, 95, 5288.

Ligands on hypervalent species are not frozen in a single position

Turnstile rotation:

allows for apical and equatorial ligands to interconvert Higher barriers (5-10 kcal/mol) and viewed as less likely to occur Occurs through physical rotation of pentacoordinated molecule

Orientation for ligands can be manipulated through two rotation processes:

Berry pseudorotation and turnstile processes

What is the most stable form of this phosphorane?

Equatophilicity: more electron rich and π ligands favor equatorial positions

Apicophilicity: more electron-withdrawing groups favor apical positions

Schmutzler, R. Ange. Chem. Int. Ed. 1965, 4, 496.

Ugi, I.; Marquarding, D.; Klusacek, H.; Gillespie, P.; Ramirez, F. Acc. Chem. Res. 1971, 4, 288.

What is the most stable form of this phosphorane?

What would we expect to be the ligand-coupling products?

Equatophilicity: more electron rich and π ligands favor equatorial positions

Apicophilicity: more electron-withdrawing groups favor apical positions

Schmutzler, R. Ange. Chem. Int. Ed. 1965, 4, 496.

Ugi, I.; Marquarding, D.; Klusacek, H.; Gillespie, P.; Ramirez, F. Acc. Chem. Res. 1971, 4, 288.

What would we expect to be the ligand-coupling products?

Boyle, B. T.; Hilton, M. C.; McNally, A J. Am. Chem. Soc. 2019, 141, 15441.

Possible coupling outcomes:

Boyle, B. T.; Hilton, M. C.; McNally, A J. Am. Chem. Soc. 2019, 141, 15441.

Boyle, B. T.; Hilton, M. C.; McNally, A J. Am. Chem. Soc. **2019**, 141, 15441.

In symmetrical hypervalent structures, apical ligands share bond lengths and polarization

Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coordination Chemistry Reviews 1973, 10, 335–422.

In symmetrical hypervalent structures, apical ligands share bond lengths and polarization

How does reactivity change when one apical ligand is differed?

Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coordination Chemistry Reviews **1973**, 10, 335–422.. Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science **2018**, 362, 799.

Need to consider influence of apical ligands on each other (trans influence)

In symmetrical hypervalent structures, apical ligands share bond lengths and polarization

How does reactivity change when one apical ligand is differed?

Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coordination Chemistry Reviews **1973**, 10, 335–422.. Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science **2018**, 362, 799.

Need to consider influence of apical ligands on each other (trans influence)

In symmetrical hypervalent structures, apical ligands share bond lengths and polarization

How does reactivity change when one apical ligand is differed?

Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coordination Chemistry Reviews **1973**, 10, 335–422.. Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science **2018**, 362, 799.

Need to consider influence of apical ligands on each other (trans influence)

In symmetrical hypervalent structures, apical ligands share bond lengths and polarization

How does reactivity change when one apical ligand is differed?

Trans affect leads to undesired ligand exchange if dissociation outcompetes ligand coupling

Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coordination Chemistry Reviews 1973, 10, 335-422...

Ligand-coupling reactivity summary

- Limited to main-group elements
- Requires hypervalency of central atom
 - Concerted coupling process

Allowed couplings are element and geometry dependent

- Driving force = return to normal valency
- "Concerted" process can be asynchronous, enabling WH forbidden couplings
 - (Pseudo)rotation processes play a role in orientation of ligands
- Kinetic and thermodynamic trans affects lead to selective coupling of single apical ligand
- Both apical and equatorial partners need to be able to accept electron density over the reaction

Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coordination Chemistry Reviews 1973, 10, 335–422.

Where does ligand-coupling find use?

To understand the applications of ligand-coupling, we need to look at oxidative addition/transmetalation

Where does ligand-coupling find use?

To understand the applications of ligand-coupling, we need to look at oxidative addition/transmetalation

Hartwig, J. F. Organotransition Metal Chemistry - From Bonding to Catalysis, 1st ed.; University Science Books, 2010.

Commentary on ligand coupling elements

Phosphorus

lodine

126

53

Product formation can be

low vielding

Underexplored

Side reactivies

Expanded coupling possibilities

Sulfur

Bi

Bismuth

208

83

Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202.

Starting material synthesis

Starting material synthesis

Unique reactivity

Most "metal" like

Ligand-coupling in recent literature

40%

44%

Jurrat, M.; Maggi, L.; Lewis, W.; Ball, L. T. Nat. Chem. 2020, 12, 260.

Zhou, M.; Tsien, J.; Qin, T. Ange. Chem. Int. Ed. 2020, 59, 7372.

Zhang, X.; Nottingham, K. G.; Patel, C.; Alegre-Requena, J. V.; Levy, J. N.; Paton, R. S.; McNally, A. Nature 2021, 594, 217.

Is catalysis possible through a ligand-coupling process?

Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science 2020, 367, 313.

Oae, S.; Uchida, Y. Acc. Chem. Res. 1991, 24, 202.

Josep Cornella: Max-Planck Bismuth catalysis research area Alex Radosevich: MIT Phosphorus catalysis research area

Is catalysis possible through a ligand-coupling process?

Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science **2020**, 367, 313. Lim, S.; Radosevich, A. T. J. Am. Chem. Soc. **2020**, 142, 16188.

Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science **2020**, 367, 313.

Lim, S.; Radosevich, A. T. J. Am. Chem. Soc. 2020, 142, 16188.

Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Science 2020, 367, 313.

Lim, S.; Radosevich, A. T. J. Am. Chem. Soc. 2020, 142, 16188.

Mamoru Tobisu: Rikkyo University Phosphorus catalysis research area

Fujimoto, H.; Kodama, T.; Yamanaka, M.; Tobisu, M. J. Am. Chem. Soc. 2020, 142, 17323.

 $\label{eq:Gwb97XD/6-31+G(d,p)} \mbox{with PCM(toluene)}$ Fujimoto, H.; Kodama, T.; Yamanaka, M.; Tobisu, M. J. Am. Chem. Soc. **2020**, 142, 17323.

Is this proof for ligand-coupling?

Josep Cornella: Max-Planck Bismuth catalysis research area Alex Radosevich: MIT Phosphorus catalysis research area Mamoru Tobisu: Rikkyo University Phosphorus catalysis research area

Ligand-coupling on hypervalent species: Transition metal chemistry without the metal

Questions?