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What is machine learning?

A computer program is said to learn from experience E with respect to some class of tasks T 
and performance measure P, if its performance at tasks in T, as measured by P, improves with 

the experience E.

   Branch of artificial intelligence

   Design systems that learn and improve as data is gathered

   The system is utilized to refine a model that in turn can predict outcomes
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Data gathering

Collect the data yourself Get the data from other sources

  High throughput

  Automation

need to gather a sufficient quantity of data In the past (and to lesser extents today), it was difficult 
to convert data from published papers and patents into 

data that could be utilized for machine learning

Datasets can have untrustworthy data and a way 
needs to be devised to prevent them from overly 

influencing the conclusions

Published papers generally omit data that does not 
work, which can cause problems in trying to build 

complete datasets
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Supervised vs unsupervised learning

Supervised learning — working with a set of labeled training data where each piece of data has an input and output object

Unsupervised learning (data mining) — the algorithm finds hidden patterns in a load of data

   Decision trees

   Random forest

   Linear regression

   Logistic regression

   Naive Bayes

   Artificial neural networks

   Support vector machine

   Relevance vector machine

   k nearest neighbor



Algorithm types: linear and logistic

Linear - fitting a polynomial curve to data

  Easily interpretable results

  Fast to train a machine

  Low average prediction accuracy

  Easily skewed by outliers

Most basic forms for regression and classification respectively

Binary logistic curve

Logistic - measures the relationship between the 
categorical dependent variable and one or more 
independent variables by using a logistic function

Similar to a linear model, however the outputs are 
restricted between 0 and 1 and there is a different 
conditional basis set (Bernoulli vs Gaussian)

  Similar properties to linear, but slighly more 
difficult for the user to interpret the results

Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons, Inc.: Indianopolis, IN, 2014.



Algorithm types: linear and logistic

Linear - fitting a polynomial curve to data

  Easily interpretable results

  Fast to train a machine

  Low average prediction accuracy

  Easily skewed by outliers

Most basic forms for regression and classification respectively

Binary logistic curve

Logistic - measures the relationship between the 
categorical dependent variable and one or more 
independent variables by using a logistic function

Similar to a linear model, however the outputs are 
restricted between 0 and 1 and there is a different 
conditional basis set (Bernoulli vs Gaussian)

  Similar properties to linear, but slighly more 
difficult for the user to interpret the results

Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons, Inc.: Indianopolis, IN, 2014.



Algorithm types: linear and logistic

Linear - fitting a polynomial curve to data

  Easily interpretable results

  Fast to train a machine

  Low average prediction accuracy

  Easily skewed by outliers

Most basic forms for regression and classification respectively

Binary logistic curve

Logistic - measures the relationship between the 
categorical dependent variable and one or more 
independent variables by using a logistic function

Similar to a linear model, however the outputs are 
restricted between 0 and 1 and there is a different 
conditional basis set (Bernoulli vs Gaussian)

  Similar properties to linear, but slighly more 
difficult for the user to interpret the results

Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons, Inc.: Indianopolis, IN, 2014.



Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons, Inc.: Indianopolis, IN, 2014.

Algorithm types: k nearest neighbor

“Lazy learning” method that is dependent on the local structure of the data

For classification, the object is classified by a majority vote of its k closest neighbors

For regression, the value is the average of its k closest neighbors

if k = 5, then the unclassified maroon oval 
would be a slate blue square, but if k = 8 

it would instead be a lilac circle

  Easily interpreted results   Low average predictive accuracy

  Poor ability to separate signal from noise



Algorithm types: naive bayes classifier

Despite their apparent oversimplification, naive Bayes classifiers have worked quite well in several real world applications

  Family of probabilistic classifiers

  Assume independence between the features

  Apply Bayes’ theorem

Bayes’ Theorem

P(A | B) =
P (B | A) * P (A)

P (B)

Note: P(A | B) is the probability of A given B

The advantage of a Bayes model is that it requires a small amount of training data necessary to attain the parameters 
required for classification, however it suffers from slightly lower average predictive accuracy in several instances

Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons, Inc.: Indianopolis, IN, 2014.



Algorithm types: decision tree

Generally low prediction accuracy

Solvent?

DMSO DMA

Heterocycle? Ni loading?

Yes No 1% 5%

5% 20%61% 70%

A form of sorting whereby a tree is split into 
branches by the imput variables

Advantages

Fast training speed

Fast prediction speed Frequently overfits the data

Performs poorly with few observations

Poor ability to deal with outliers and 
separate signal from noise

Results somewhat interpretable by user

Disadvantages

Can be used for both classification 
and regression

Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons, Inc.: Indianopolis, IN, 2014.



Algorithm types: random forests

Similar to a decision tree

Rather than making just one tree, several trees are produced, with each of being randomly selected to 
take into account only certain variables

Select the mode classification or mean prediction from all of the individual trees

  Decreases the tendency to overfit the data   Good at separating signals from noise

  The reasoning behind the algorithm is more difficult for someone to understand

  Can be skewed toward certain descriptors if there are more variables associated with a given descriptor

Can be avoided by using the cforest algorithm which can avoid descriptor selection bias

Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons, Inc.: Indianopolis, IN, 2014.



Algorithm types: artificial neural network

Computing system inspired by biological neural networks

Based on a collection of connected nodes called artificial neurons

  Challenging to understand what the algorithm is doing

  High average predictive accuracy

  Slow training speed

A framework for many machine learning algorithms to work together and process coplex data imputs

An artificial neuron can transmit a signal to other neurons attached to it by an edge that in turn can signal other neurons

OutputInput

Examples of this include learning to identify images that 
contain cats by being shown images that have been 

manually labeled cat or no cat

This has been used by groups in the past to convert 
chemical structures in patents and old papers into SMILES 

and other readable formats for machine learning

  Deals with irrelevant features well

Bell, J. Machine Learning: Hands-On for Developers and Technical Professionals; John Wiley & Sons, Inc.: Indianopolis, IN, 2014.
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Machine learning

Chemistry

Retrosynthesis

Reaction optimization
Medicinal Chemistry

Materials chemistry

Reaction discovery

  Identifying ideal condtions

  Predicting yields

  Identifying ideal alloys

  Synthesis/ Crystalization

  Structure generation

  Binding prediction

  Estimating ADMET 
properties



History of machine learning and synthesis planning

1969: Organic Chemical
Simulation of Synthesis (OCSS)

History of machine learning and synthesis planning

Me

OH
Me Me

Me

First computer assisted 
retrosynthetic analysis

Provided a list of heuristic conditions to guide the choice of synthetic disconnections

Short lived and eventually split in two

Corey Wipke

Corey, E. J.; Wipke, W. T. Science 1969, 166, 178.



Organic Chemical Simulation of Synthesis (OCSS)

Enter target molecule

Chemist specifies preferred operation

Percieve structural features

Choose strategy

Choose mechanism to satisfy strategy

Assign Priorities

Apply highest priority mechanism

Delete invalid structures

Access goal attainment

Update tree

Output structure

Out of resources or interrupted?

Chemist evaluates structures

Stop

Chemist satisfied
Chemist unsatisfied

NoYes

Corey, E. J.; Wipke, W. T. Science 1969, 166, 178.



History of machine learning and synthesis planning

1969: OCSS

1972: Corey’s LHASA

1976: Wipke’s SECS

  Built upon the LHASA approach by expanding the database

  Received backing from Swiss/German pharma companies,         
but eventually disconnected

Provided a set of six strategies for retrosynthetic analysis

The chemist chooses which strategies to be tried

“LHASA was not designed to invent chemistry that has never 
been performed in a laboratoy” - Corey

Continuously updated through 2010

Grzybowski, B. A. et al Angew. Cem. Int. Ed. 2016, 55, 5904.



Six principles of Logic and Heuristics Applied to Synthetic Analysis (LHASA)

Transformation-based strategy — Identification of a powerful simplifying transformation (ex. Diels- Alder, Aldol 
cyclization, etc.)

Mechanistic transforms — The target is converted to a reactive intermediate from which other intermediates of 
synthetic value can be generated

Me
Me

Me

O

Me
Me

Me

OH

Me

MeMe

OH

Me

Me

Me

OH

Me

Me

Me

O

Sample mechanistic transformation

Corey, E. J.; Long, A. K.; Rubenstein, S. D.. Science 1985, 228, 408.



Six principles of Logic and Heuristics Applied to Synthetic Analysis (LHASA)

Structure-goal — Identification of a potential starting material, building block, retron-containing subunit or 
initiating chiral element

Topological strategies — Identification of one or more bonds that could lead to major simplifications

Stereochemical strategies — Stereoselective reactions, or steric based arguments used to reduce stereocomplexity

Functional group-oriented strategies — Functional group interconversions and determining logical disconnections 
based off of functional group arrangement(s)

OH

HO

CO2H
Me

OH
OHO

HO OH
OH

OH

Corey, E. J.; Long, A. K.; Rubenstein, S. D.. Science 1985, 228, 408.



History of machine learning and synthesis planning

1969: OCSS

1972: Corey’s LHASA

1976: Wipke’s SECS

1977: Gelernter’s SYNCHEM

  Self-guided   Too “short-termed”

1989: Hendrickson’s SYNGEN

1989: Johnson’s SYNLMA

Tried converting compounds into 
theoroms that needed to be proved

Combinitorial explosion issues

Grzybowski, B. A. et al Angew. Cem. Int. Ed. 2016, 55, 5904.



Henderson’s SYNGEN

Focus on skeletal construction

Bondset — a set of bonds λ which need to be constructed
Me

Me
Me

Me
Me

Me
Me

A

B

D

C

The number of ways to break apart a skeleton is equal 
to the number of possible bondsets

b! / (b-λ)! possible bond sets for b bonds

Hendrickson, J. B. Angew. Chem. Int. Ed. 1990, 29, 1286.

Hendrickson’s SYNGEN



Henderson’s SYNGEN

Focus on skeletal construction

Me
Me

Me

Me
Me

Me
Me

A

B

D

C

Using an algorithm, SYNGEN strives 
for convergent assemblies using 
starting materials in its database

OMe

H

H H

MeO

OMe

H

H OH
MeO

O
Me

O

MeO

O

Me
O

MeO

HO

MeO

O

X

Hendrickson’s SYNGEN

Hendrickson, J. B. Angew. Chem. Int. Ed. 1990, 29, 1286.



History of machine learning and synthesis planning

1969: OCSS

1972: Corey’s LHASA

1976: Wipke’s SECS

1977: Gelernter’s SYNCHEM

1989: Hendrickson’s SYNGEN

1989: Johnson’s SYNLMA

1990: Hanessian’s CHIRON -
recognized sterochemistry and 
suggested methods to access it 

from a chiral pool

1995: Gasteiger’s WODCA - bidirectional 
synthetic planning assistor that focuses on the 

fundamental properties of bonds to suggest 
synthetic disconnections

  Bonds represented as bond-
electron matrices

  Reactions treated as R-matrices 
attained by the subtraction of 

substrate and product matrices

  Able to identify novel pericyclic 
transformations

  Computationally intensive

1993: Ugi’s IGOR

Grzybowski, B. A. et al Angew. Cem. Int. Ed. 2016, 55, 5904.
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1989: Johnson’s SYNLMA

1990: Hanessian’s CHIRON -
recognized sterochemistry and 
suggested methods to access it 

from a chiral pool

1993: Ugi’s IGOR

1995: Gasteiger’s WODCA - bidirectional 
synthetic planning assistor that focuses on the 

fundamental properties of bonds to suggest 
synthetic disconnections

1998: Barone and Chanon’s SESAM - 
identifies synthons based on skeletal 
overlaps, but ignores functional groups

2009: ARChem Route Designer - 
Machine extracted ~100,000 rules from 
literature examples that are utilized to 
design synthetic routes

Grzybowski, B. A. et al Angew. Cem. Int. Ed. 2016, 55, 5904.



Synthesis Planning with MCTS-3N

The purpose of a Monte Carlo tree search is to given a game state, choose the most promising next move

MCTS Steps

   Selection

   Expansion

   Simulation

   Backpropogate

Select a route toward the most 
promising move

Expand the tree by giving it further 
options off of its current leaf

Simulate each of the new leaves

Transmit the data back to the 
initial graph

This process is completed recursively until a route is found

Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.
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Synthesis Planning with MCTS-3N

Merged a Monte Carlo tree search (MCTS) with three separate neural networks to devise retrosyntheses

   Utilized all reactions on Reaxy’s prior to 2015 to generate a training set

   Extracted 301,671 rules from this dataset and utilized them to train neural networks

Neural networks learn the context in which reactions can occur (functional group tolerance)

   Developed three neural networks

1. Expansion policy - guides the search in promising directions by proposing a restricted number of transformations

2. Examine the feasibility of the proposed transformation

3. Estimates the position value

Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.



Synthesis Planning with MCTS-3N

Merged a Monte Carlo tree search (MCTS) with three separate neural networks to devise retrosyntheses

Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.



Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.

Synthesis Planning with MCTS-3N

Evaluating Performance

   The neural network predicted the correct solution 31% of the time and had the correct solution in the top 50 73% of the time

   The neural network reaction checker has a false positive rate of 1.5% and false negative of 14%

Double blind test asking chemists to pick between 
similarly long literature and MCTS syntheses

The program was able to solve 80% of 500 diverse 
molecules in under 5 seconds



Chematica

Unites network theory, modern high-power computing, artificial intelligence, and expert 
chemical knowledge to rapidly design synthetic pathways

Thousands of reactions hand coded by experts

Grzybowski, B. A. et al. Chem 2018, 4, 522.
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Chematica

Unites network theory, modern high-power computing, artificial intelligence, and expert 
chemical knowledge to rapidly design synthetic pathways

Thousands of reactions hand coded by experts

Simplified graphic example of the synthetic possibilities

Pruned down options by removing branches with unlikely 
structural motifs, that proceed through strained 

intermediates, etc.

A scoring algorithm evaluates the resultant substrates 
produced and the reactions required to make the set



Grzybowski, B. A. et al. Chem 2018, 4, 522.

Chematica

N
Me

O

Me

N

O

HN
SO2

Me

Me
Cl

Improved the yield 8-fold relative to literature

Decreased the number of FCC separations

Unites network theory, modern high-power computing, artificial intelligence, and expert 
chemical knowledge to rapidly design synthetic pathways

Thousands of reactions hand coded by experts

The software was tested on several compounds 
of commercial interest to MilliporeSigma that 

currently had troublesome syntheses

The software designed routes that were then 
executed without changes except for 

straightforward adjustments to the reaction 
conditions (e.g. temperature, solvent, etc.)

In every instance improvements were made 
(shorter routes, fewer chromatographic steps, 

higher yields, more reproducible)

Chematica was also able to design a pathway that broke a patented route to a compound while more than doubling the yield!
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Predicting reaction performance

   Ran 1536 well plates using a Mosquito robot

   Computationally pulled out molecular, atomic, and 
vibrational properties

   Examined linear regression and ML methods to try and 
predict the yield from the reaction parameters

Base, Ligand, 0.1 M DMSO
60 ℃, 16 hMe

NH2 X
R

H
N

R
Me

Pd

Why are isoxazoles challenging in the Buchwald Hartwig reaction?

4608 reactions

15 aryl halides

23 isoxazole additives

4 Pd catalysts

3 bases

Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.
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Predicting reaction performance

Base, Ligand, 0.1 M DMSO
60 ℃, 16 hMe

NH2 X
R

H
N

R
Me

Pd

Examining training set data size

Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.



Predicting reaction performance

Base, Ligand, 0.1 M DMSO
60 ℃, 16 hMe

NH2 X
R

H
N

R
Me

Pd

Most important reaction parameters

   Additive *C3 NMR shift

   Additive E LUMO

   Aryl halide *C3 NMR shift

   Additive *O1 electrostatic charge

   Additive *C5 electrostatic charge

Problems with oxidative addition into the isoxazole?

N
O Pd(PPh3)4

C6D6, RT N
Pd

O
PPh3

PPh3

Oxidative addition product believed to be observed 
by 31P, 1H, and 13C NMR

The observation of oxidative addition appeared to 
track well with the important reaction parameters

Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.



Reaction discovery using an automated robot

  Executes six experiments in parallel

  Analyzes reactions by 1H NMR, MS, and IR

Automated Robot

The reactions are classified as reactive or unreactive by a 
supported vector machine (SVM) with a linear kernel

The SVM was trained on a set of 72 reactive and non reactive 
mixtures and could classify mixtures with an accuracy of 86%

This algorithm compared the IR and NMR spectra of the 
product to that of the starting material and registered 

differences as reactivity hits

Can machine learning explore chemical space 
and predict areas of reactivity?

Examined different combinations of two- and 
three- component reactions from a pool of 18 
starting materials using an automated robot

SVM results were used to train a linear discriminant analysis 
(LDA) model that could construct a model of chemical space

Granda, J. M.; Donina, L.; Dragone V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377.



Reaction discovery using an automated robot

Granda, J. M.; Donina, L.; Dragone V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377.



Reaction discovery using an automated robot

By surveying 10% of the reaction space, the model could accurately predict the reactivity of 80% of the chemical space

Granda, J. M.; Donina, L.; Dragone V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377.



Granda, J. M.; Donina, L.; Dragone V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377.

Reaction discovery using an automated robot

manual examination of the reactive combinations identified by the machine lead to the discovery of four novel transformations

CO2Me
N

ON
O

N N
MeCN, 25 ℃

N

N

O

N
O

H
N

CO2Me

N

N
MeMe CO2Me

CO2Me N
O

MeCN, 25 ℃
O

MeO2C CO2Me

CO2Me

NH

MeO2C

PhN

N
Me

Me



Reaction discovery using an automated robot

This system could also be utilized for the prediction of yields

Granda, J. M.; Donina, L.; Dragone V.; Long, D.-L.; Cronin, L. Nature 2018, 559, 377.



Raccuglia, P.; Elbert, K. D.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.

Applying machine learning to vanadium—selenite crystal synthesis

historical 
reactions

database

SVM model

Interpretable 
decision tree

Chemical 
hypothesis

Suggested 
reactions training and 

test data

Generation of 
reaction and 

reactant descriptors

experimental 
testing

experimental 
testing

various 
reactant 

combinations

The synthesis of MOFs is not fully understood 
and development of new compounds relies 

primarily on trial and error

Acquired syntheses that failed from lab 
notebooks and utilized them to 
generate a chemical database



Applying machine learning to vanadium—selenite crystal synthesis

The model outperformed traditional 
human strategies by a statistically 

significant margin

Raccuglia, P.; Elbert, K. D.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.



Applying machine learning to vanadium—selenite crystal synthesis

The SVM model was converted to a decision tree to make it chemically interpretable

Raccuglia, P.; Elbert, K. D.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.
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Applying machine learning to vanadium—selenite crystal synthesis

This decision tree could be utilized to make chemical hypotheses

  Avoid preciptating 
inorganic building units

  Unable to directly generate 
V4+ in situ from V5+

  Alter the charge density of 
inorganic secondary building units

No Na+, longer 
reaction times V4+ reagents required Oxalate component 

required

Spherical, low-projection-
size amines

Long, linear tri- and 
tetramines

Small, low-polarizability 
amines
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Questions?


