Late-Stage C(sp³)–H Methylation of Drug Molecules

Edna Mao and David W.C. MacMillan*

ABSTRACT: Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups onto complex molecules are highly coveted. Late-stage C–H functionalization is a particularly attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via C(sp³)–H functionalization of a broad array of saturated heterocycles, enabled by the merger of decatungstate photocatalysis and a unique nickel-mediated S₂H₂ bond formation. To further demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied to a range of drug molecules en route to an array of methylated drug analogues.

The term “magic methyl effect” has been coined to describe the significant increases in potency, efficacy, or stability that often arise when a methyl group is introduced to a pharmaceutical compound.¹,² This effect is especially pertinent to the saturated heterocyclic cores of drugs, where a strategically placed methyl substituent can drastically transform conformational preferences, allowing for the modulation of 3D structure through a minimal disturbance in molecular weight (Figure 1).³,⁴ Consequently, methyl analogues of drug candidates are high value targets in discovery campaigns.⁵–⁸ However, generating a library of such analogues can be a significant synthetic burden, requiring multiple lengthy de novo syntheses. To meet these synthetic demands, late-stage functionalization has arisen as the most attractive approach for the generation and diversification of drug analogue libraries.⁹–¹¹ As such, considerable research has been devoted to the late-stage incorporation of methyl groups onto pharmaceutical scaffolds at both sp² and sp³ carbon centers.¹² Recent notable efforts to install methyl groups at α-heteroatom C(sp³)–H centers have broadly taken one of two approaches. First, two-step sequences have been reported, invoking C–H oxidation through an iminium or oxonium intermediate, followed by a subsequent nucleophilic methyl addition.¹³,¹⁴ Alternatively, reports from our group and Stahl demonstrate one-step protocols merging nickel catalysis with light-mediated hydrogen atom transfer (HAT).¹⁵,¹⁶ However, current technologies remain to be generalized across substrate classes and have limited application to the late-stage functionalization of drug-like molecules.

In biological systems, carbon–methyl bond formation is typically accomplished via cobalamin-dependent radical S-adenosylmethionine (SAM) methyltransferases.¹⁷,¹⁸ Radical SAM enzymes operate by generating a S′-deoxyadenosyl radical that performs HAT on biochemical substrates to generate a carbon-centered radical.¹⁹,²⁰ This open-shell species reacts with a methylcobalamin complex through a bimolecular homolytic substitution (S₂H₂) to forge C(sp³)-methyl bonds.²¹,²² Utilizing these elementary steps, radical SAM enzymes are able to efficiently install methyl substituents onto complex and functionally dense biomolecules, such as amino acids, nucleic acids, and biosynthetic intermediates. Given the broad utility of this approach in biochemistry, we sought to employ a similar reaction design to target the late-stage C(sp³)–H methylation of drug molecules. The success of the envisioned reaction platform hinges on two fundamental steps: (1) alkyl radical generation via catalytic site-selective HAT and (2) S₂H₂-mediated methyl–C(sp³) bond formation.

In considering an appropriate catalytic HAT manifold to enact C–H methylation, we were drawn to the decatungstate anion.²³,²⁴ Many groups, including our own, have successfully demonstrated the merger of decatungstate photocatalysis and transition metal cross-coupling for a diverse array of C–H functionalizations;²⁵–²⁹ however, the application of this platform toward C(sp³)–C(sp³) coupling has yet to be explored. The excited state decatungstate enables the facile abstraction of hydridic C–H bonds; meanwhile, its size discourages abstraction at sterically hindered sites, circumventing potential issues with overalkylation and stereocenter racemization.³⁰ To mediate efficient carbon–carbon bond formation, we considered S₂H₂ reactivity, which has recently emerged as a mode of reactivity for organic synthesis.³¹–³⁴ A notable report from our group details the S₂H₂ of an alkyl radical onto an iron-porphyrin–alkyl complex as the critical elementary step to forge challenging C(sp³)–C(sp³) bonds.³⁵ While this bond-forming mechanism is commonly associated with metal-porphyrinoids, the Sanford lab has characterized a high valent nickel scorpionate–alkyl complex proposed to undergo S₂H₂ with aryl radicals.³⁶ Inspired by this work, our group has recently reported a doubly decarboxylative C(sp³)–
C(sp³) coupling through radical sorting and Sₐ2, enabled by a high valent nickel-scorpionate scaffold. We hypothesized that our reaction design merging photoredox-HAT and S₂H₂ catalysis can allow for broad late-stage access to methyl-bearing drug analogues.

The proposed reaction mechanism is outlined in Figure 2. Photoexcitation of decatungstate anion, followed by rapid intersystem crossing, yields the excited decatungstate triplet state. This electrophilic species performs a polarity-matched HAT at the hydridic α-amino C−H bond of substrate. The HAT results in reduced decatungstate and alkyl radical. The reduced decatungstate undergoes disproportionation to regenerate ground state decatungstate, as well as doubly reduced decatungstate. This species performs single electron reduction of N-acetyloxyphthalimide, triggering its decarboxylation to afford methyl radical, and turning over the decatungstate cycle. Methyl radical is selectively sequestered by nickel complex, forming complex which undergoes Sₐ2 with alkyl radical. This bond-forming turns over the nickel catalyst and furnishes the C(sp³)−methyl product. Key to the success of this mechanism is the nickel-mediated radical sorting effect. The propensity for radicals to bind is inversely correlated with the degree of substitution at the radical-bearing carbon. Consequently, the selective trapping of methyl radical to form is relatively favorable, lowering the concentration of free methyl radical in solution. Meanwhile, the binding of a 2° radical to form is highly disfavored and reversible, directing the unbound to couple with 10 and form the cross-coupled product.

After an optimization campaign, we identified conditions in which irradiation of N-Boc piperidine, N-acetyloxyphthalimide, Ni(II) acetylacetonate/KTp*, and tetrabutylammonium decatungstate in acetone [0.1 M] for 8 h, resulted in good yields of methylated products. We next evaluated the scope of the transformation, focusing our attention on over ten classes of prevalent saturated heterocycles in drugs. Four- to seven-membered azacycles underwent reaction to deliver methylated ring systems in moderate to excellent yields. Piperazine was delivered with the methyl group α- to the comparatively more electron-rich nitrogen. N-substituted morpholines were functionalized at the more hydridic α-amino sites. Methyl groups could also be introduced to semisaturated bicycles to deliver and. After an optimization campaign, we identified conditions in which irradiation of N-Boc piperidine, N-acetyloxyphthalimide, Ni(II) acetylacetonate/KTp*, and tetrabutylammonium decatungstate in acetone [0.1 M] for 8 h, resulted in good yields of methylated products. We next evaluated the scope of the transformation, focusing our attention on over ten classes of prevalent saturated heterocycles in drugs (Table 1). Four- to seven-membered azacycles underwent reaction to deliver methylated ring systems in moderate to excellent yields. Piperazine was delivered with the methyl group α- to the comparatively more electron-rich nitrogen. N-substituted morpholines were functionalized at the more hydridic α-amino sites. Methyl groups could also be introduced to semisaturated bicycles to deliver and.
Table 1. Scope of Heterocyclic Fragments and Drug Cores

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield (%)</th>
<th>d.r.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(±)-14</td>
<td>43%</td>
<td>4.6:1</td>
<td></td>
</tr>
<tr>
<td>(±)-15</td>
<td>60%</td>
<td>1.7:1</td>
<td></td>
</tr>
<tr>
<td>(±)-16</td>
<td>39%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±)-17</td>
<td>86%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±)-18</td>
<td>41%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±)-19</td>
<td>49%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±)-20</td>
<td>64%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±)-21</td>
<td>69%</td>
<td>2.3:1</td>
<td></td>
</tr>
<tr>
<td>(±)-22</td>
<td>47%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±)-23</td>
<td>70%</td>
<td>10:2:5:1 r.r.</td>
<td></td>
</tr>
<tr>
<td>(±)-24</td>
<td>72%</td>
<td>2:1 mono/bis-Me</td>
<td></td>
</tr>
<tr>
<td>(±)-25</td>
<td>55%</td>
<td>1:1 r.r.</td>
<td></td>
</tr>
<tr>
<td>(±)-26</td>
<td>70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±)-27</td>
<td>60%</td>
<td>2:1 mono/bis-Me</td>
<td></td>
</tr>
<tr>
<td>(±)-28</td>
<td>44%</td>
<td>5:1 mono/bis-Me</td>
<td></td>
</tr>
<tr>
<td>(±)-29</td>
<td>55%</td>
<td>2:1 r.r.</td>
<td></td>
</tr>
</tbody>
</table>

"Yields isolated unless indicated. "Single isomer" refers to substrates for which >95% selectivity for indicated regioisomer and/or diastereomer was observed. Performed on 0.5 mmol scale with substrate (1.0 equiv), N-acetyloxyphthalimide (2.0 equiv), TBADT (5 mol %), Ni(acac)$_2$ (10 mol %), KTp* (10 mol %), Na$_3$PO$_4$ (2 equiv), acetone [0.025 M], integrated photoreactor (365 nm, 100% light intensity, 12 h). See SI for structural assignment of minor product(s). Iterative addition protocol of TBADT and/or N-acetyloxyphthalimide utilized. See SI for specific experimental details. 2.5 mol % TBADT and 1.5 equiv of N-acetyloxyphthalimide used, irradiated for 8 h. 4:3:1 d.r. mono-Me/4:1 d.r. mono-Me. Due to product instability, the assay yield is reported, which is determined by uHPLC analysis of crude reaction mixture.
yields, respectively). The piperazine cores of buspirone and terazosin were functionalized in good yields to deliver 24 (72% yield, 2:1 mono/bis-Me) and 25 (55% yield, 1:1 r.r.), respectively. The regioselectivity in cases such as these is determined by the relative hydricities of all abstractable C−H bonds. Piperidines, the most common saturated heterocycle in drug molecules, make up the cores of haloperidol, risperidone, and crizotinib. Pleasingly, the C(sp^3)-methylations of these rings with varying 4- substitutions proceeded efficiently (26−28, 44%−70% yield). Notably, the benzisoxazole moiety of 27, which typically undergoes oxidative addition into Ni(0),^51 was stable under our reaction conditions. The core of lifitegrast, a benzoyl-substituted tetrahydroquinoline, was functionalized at two α-amino positions (29, 55% yield, 1:1 r.r.). In addition to nitrogen heterocycles, α-oxy methylation could also be accomplished at lower efficiencies. A heteroaryl-fused tetrahydrofuran was functionalized at both α-oxy sites to deliver 30 (47%, 1:1 r.r.). Five- and six-membered cyclic ethers underwent C(sp^3)-methyl coupling in moderate yields and predictable selectivities (31−34, 31−52% yield).

Table 2. Late-Stage Functionalization of Drug Molecules

```
<table>
<thead>
<tr>
<th>Late-stage methylation of drug molecules</th>
<th>= minor site(s) of functionalization</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="N-Boc Flouoxetine" /></td>
<td><img src="image2" alt="N-Boc Flouoxetine" /></td>
</tr>
<tr>
<td><img src="image3" alt="Levetiracetam" /></td>
<td><img src="image4" alt="Levetiracetam" /></td>
</tr>
<tr>
<td><img src="image5" alt="Linezolid" /></td>
<td><img src="image6" alt="Linezolid" /></td>
</tr>
<tr>
<td><img src="image7" alt="Varenicline" /></td>
<td><img src="image8" alt="Varenicline" /></td>
</tr>
<tr>
<td><img src="image9" alt="N-Boc Sitagliptin" /></td>
<td><img src="image10" alt="N-Boc Sitagliptin" /></td>
</tr>
<tr>
<td><img src="image11" alt="Praziquantel" /></td>
<td><img src="image12" alt="Praziquantel" /></td>
</tr>
<tr>
<td><img src="image13" alt="Clopidogrel" /></td>
<td><img src="image14" alt="Clopidogrel" /></td>
</tr>
<tr>
<td><img src="image15" alt="Fiprenixan analogue" /></td>
<td><img src="image16" alt="Fiprenixan analogue" /></td>
</tr>
<tr>
<td><img src="image17" alt="Loratadine" /></td>
<td><img src="image18" alt="Loratadine" /></td>
</tr>
<tr>
<td><img src="image19" alt="Olaparib" /></td>
<td><img src="image20" alt="Olaparib" /></td>
</tr>
</tbody>
</table>

All yields isolated. “Single isomer” refers to substrates for which >95% selectivity for indicated regioisomer and/or diastereomer was observed. Performed on 0.5 mmol scale with substrate (1.0 equiv), N-acetylxylophthalimide (2.0 equiv), TBADT (5 mol %), Ni(acac)_2 (10 mol %), KTp (10 mol %), Na_3PO_4 (2 equiv), acetone [0.05 M], integrated photoreactor (365 nm, 100% light intensity, 12 h). Iterative addition protocol of TBADT and/or N-acetylxylophthalimide utilized. See SI for specific experimental details. See SI for discussion of stereocenters. See SI for structural assignments of minor product(s). Minor product(s) isolated but structure(s) unassigned. Not included in reported yield. See SI for details. 2.5 mol % TBADT and 1.5 equiv of N-acetylxylophthalimide used, irradiated for 8 h.
```

https://doi.org/10.1021/jacs.2c13396
J. Am. Chem. Soc. 2023, 145, 2787−2793
Table 3. Expedited Synthesis of Suvorexant and Its Analogues

We next examined the late-stage incorporation of methyl groups onto drug molecules—a longstanding goal for medicinal chemists. As shown in Table 2, Boc-protected fluoxetine was functionalized preferentially at the primary site (35, 40%, 83% selectivity), representing a one-carbon homologation of an acyclic amine. Interestingly, a methyl group was selectively coupled onto praziquantel at the tertiary α-amino position (36, 47%). This is the only example we encountered where tertiary functionalization took precedence over secondary. The unique fused structure of the drug may impart a cupped geometry onto the molecule, allowing for sterically congested bonds is characteristic to S-voroxant. Methyl-leviteracetam was generated as a single regioisomer in 35, 52% yield, 1.8:1 d.r.). Clopidogrel, a top-selling small molecule drug for the treatment of insomnia, is a representative example of the transformative effects that a methyl group can impart. In early stages, metabolism studies determined that the 7-position of the diazepane ring was susceptible to oxidation. The incorporation of a methyl group at that position resulted in an increase in potency and decrease in clearance rates, improvements that culminated in the eventual approval of the methylated drug. The des-methyl analogue of suvorexant (45a) can be synthesized in two steps from commercially available reagents. Subjecting this material to reaction conditions resulted in a 62% yield of a mixture of methyl-bearing products as well as recoverable starting material. In three steps, (±)-suvorexant (45-1) was obtained along with all other α-amino-methyl analogues (Table 3). We believe this example highlights this method’s ability to enable the rapid synthesis methylated analogues.

In summary, we report a method for the direct C(sp^3)–H methylation of drug-like fragments and drug compounds. We have demonstrated that a bioinspired reaction via an HAT–S_2/2 dual catalytic strategy is an effective new platform for performing this highly coveted transformation. The stereo-electronic properties of the decatungstate catalyst allow for selective α-heteroatom functionalization of a variety of saturated heterocycles, and the unique outer-sphere reactivity of a high-valent nickel scorpionate complex allows for mild and efficient bond formation. Overall, a variety of differentially substituted nitrogen heterocycles were tolerated under our reaction conditions (see SI for discussion and guidelines for substrate selection). We envision that this method will allow for the efficient synthesis of methylated analogues of valuable small molecules and highly expedite the exploration of the magic methyl effect.
ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c13396.

Additional experimental details, characterization, and spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

David W.C. MacMillan — Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States; orcid.org/0000-0001-6447-0587; Email: dmacmill@princeton.edu

Author

Edna Mao — Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.2c13396

Notes

The authors declare the following competing financial interest(s): D.W.C.M. declares a competing financial interest with respect to the integratoreactor.

ACKNOWLEDGMENTS

The authors are grateful for financial support provided by the National Institute of General Medical Sciences (NIGMS), the NIH (under Award No. R35GM134897-03), the Princeton Catalysis Initiative, and kind gifts from Merck, Janssen, BMS, Genentech, Celgene, and Pfizer. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS. E.M. thanks Princeton University, E. Taylor, and the Taylor family for an Edward C. Taylor Fellowship. The authors thank W. Liu, P. Sarver, and N. Intermaggio for helpful scientific discussions, and R. Lambert for assistance in the preparation of this manuscript.

REFERENCES

(21) Wang, Y.; Begley, T. P. Mechanistic Studies on CysS - A Vitamin B12-Dependent Radical SAM Methyltransferase Involved in
the Biosynthesis of the Tert-Butyl Group of Cystobactamid. J. Am. Chem. Soc. 2020, 142, 9944–9954.

(50) Bogdos, M. K.; Müller, P.; Morandi, B. Structural Evidence for Aromatic Hydroxycycle N-O Bond Activation via Oxidative Addition. Organometallics 2023, Article ASAP. DOI: 10.1021/acs.organomet.2c00533.

