The Career of Peter G. Schultz

Nick Paras MacMillan Group Meeting January 10, 2001

The Career of Peter G. Schultz

Education:	1979—B.S., Caltech
	1984-Ph. D., Caltech, advisor: Prof. Peter Dervan
	Thesis Title: "Ground and Excited State Studies of 1,1-Diazenes/ Design of Sequence Specific DNA Cleaving Molecules"
	1984—Postdoctoral Fellow, MIT, advisor: Prof. Christopher Walsh
Professional:	1985-1999—Professor, UC Berkeley (1987, 1989)
	1985-present— P.I., LBL
	1988-present— Founding Scientist/Chairman Scientific Advisory Board, Affymax Research Institute, Palo Alto
	1993-present— Scientific Advisory Board, CV Therapeutics, Mountain View
	1994-1998 — Howard Hughes Medical Institute Investigator
	1995-present – Founder and Director, Symyx Technologies, Palo Alto
	1999-present — Professor, The Scripps Research Institute
	1999-present— Director, Genomics Institute of the Novartis Research Foundation, La Jolla
	2000-present—Founder and Director, Syrrx Inc., La Jolla

The Career of Peter G. Schultz: Major Research Interests

Catalytic Antibodies
Application of molecular diversity to problems in biomolecular recognition and catalysis, drug discovery, and materials science
Development of methods for incorporating unnatural amino acids and base pairs selectively into proteins and nucleic acids
Single-molecule biological imaging
Functional genomics

Unifying theme: "A lesson from nature" => develop highly sophisticated methods for screening vast numbers of discrete compounds for novel or desired properties.

Lead References: ACIEE, 1999, 38, 35-54; PNAS 2000, 97, 5179-5184 (single molecule imaging); ACIEE, 1999, 96, 4780-4785 (expanded genetic code); Science 1998, 281, 533-538 (combi medchem); PNAS 1998, 95, 10523-10528 (function directed evolution); Science 1998, 279, 1712-1714 (combi materials); Science 1995, 269, 1835-1842 (catalytic antibodies).

PGS' First Report of Catalytic Antibodies:

MOPC167 previously identified to bind to phosphate diester (Biochem., 1978, 17, 1733.)

Pollack, Jacobs & PGS (Science, 1986, 234, 1570)

Lerner's First Report of Catalytic Antibodies:

Tramontano, Janda & Lerner (Science, 1986, 234, 1566)

More Antibodies than Gene Sequences: Anatomy of an Antibody

Molecular Biology of the Cell, 2nd ed. Alberts, et. al. Garland: New York; pp. 1011-1031.

Scope of Antibody Catalysis: Enzymatic Reactions

Cochran & PGS Science, 1990, 249, 781. PGS, et.al. Biochem 1998, 37, 779.

Scope of Antibody Catalysis: Reactions with Inexpensive Cofactors

Oxidation Hapten

Hsieh, Stephans & PGS, JACS, 1994, 116, 2167.

NalO₄ and NaCNBH₃ substantially cheaper than enzymatic cofactors like NADH.

Nakayama & PGS *JACS*, 1992, 114, 780. Hsieh & PGS, et. al., *Science*, 1993, 260, 337.

This represents the first production of an unnatural RNA with specifically designed catalytic function.

PGS, et. al., Science, 1994, 264, 1924.

RNA Enriched by TS-Affinity Selection Functions as a Catalyst

- An initial library of approximately 10¹⁵ oligonucleotides with 50 randomized positions was generated.
- Primary structure of RNA easily established by sequencing of complimentary DNA.

Phage Display: Non-Immunogenic Enzyme + Blueprint Amplification

Synthesis and Analysis of a Carbamate Biopolymer Library

256 discrete, spatially segregated oligocarbamates were made with binary masks of 8 coupling steps. (Synthesis of peptide library in this fashion previously described. PGS group also developed oligourea and cyclic urea libraries.)

Oligomer library was treated with a solution of monoclonal antibody followed by fluorescin-conjugated secondary antibodies.

Analysis by scanning epifluorescent microscopy showed sites of tightly binding polymer.

Independent resynthesis of both hits and misses and solution assays were in agreement with parallel data.

1 compound/ .0064 cm² -----

PGS, et. al., Science, 1993, 261, 1303.

Many subtle interactions of material components, dopants, and surface interfaces are poorly understood. Combinatorial approaches could allow for rapid identification of unpredictable novel inorganic compounds. PGS, et. al. reported the first use of combinatorial chemistry in materials science: *Science*, 1995, 268, 1738.

Generating a Library of Materials: ID of a Blue Photoluminescent Material

Photomask techniques for selective deposition of inorganic materials already exist (microchip industry)

Methods of deposition include: sputtering, pulsed laser deposition, and scanning fluid delivery systems.

Schultz and co-workers used the above photomasks to selectively deposit:

 $Ga_2O_3,\,SiO_2,\,CeO_2,\,EuF_3,\,Tb_4O_7,\,Ag,\,TiO_2,\,Mn_3O_4,\,Gd_2O_3,\,ZnO,\,and\,Y_2O_3$

thereby generating a library of 4⁵ (1024) different material compositions.

Screening a Library of Materials: ID of a Blue Photoluminescent Material

Scanning microscopy and spectroscopy are techniques commonly employed for screening of material libraries for desired properties; infrared thermography used for detecting catalytic activity.

The library depicted at right under normal (top) and UV light (bottom) was subjected to scanning spectroscopy to measure luminescence of each material.

Inclusion of an internal standard of known luminescence allowed quantitative determination of luminescence.

Examples of New Materials Obtained through Combi:

(La_{0.88}S_{0.12})CoO₃ : magnetoresistive properties

 $Gd_3Ga_5O_{12}/SiO_x$: blue phosphorescence

CuO based high temperature superconductors

Catalysts for organic reactions (polymerization, etc.)

PGS, et. al., *ACIEE*, 1999, 38, 36-54. PGS, et. al., *Science*, 1998, 279, 1712-1714.

- - - -

Analysis of Active Site-Binding of a Kinase Inhibitor

Cyclin-Depependent Kinases represent a cancer therapeutic target.

Olomoucine binds human CDK2 at 160 degree angle from the native substrate.

Novel binding mode of Olomoucine suggested a library of 2,6,9substituted purines as opposed to ribose chain modification.

Binding conformation of 3 inhibitors (Olomoucine in white)

Inhibitor vs. ATP in binding conformation

PGS, et. al., *JACS*, 1996, 118, 7430.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Purvalanol as an Active and Selective Kinase Inhibitor

3 R groups varied independently in separate libraries.

Final library tested best candidates for cooperative effects.

Kinase	Purv. A (IC50 nM)	Purv. B (IC50 nM)
dc2-cyclin B	4	6
dc2-cyclin B	40	50
dk2-cyclin A	70	6
dk2-cýclin E	35	9
dk4-cyclin D1	850 >10,0	00
dk5-p35	75	6
erk1	9,000	3,333
Protein kinase C	>10,000 >100	,000
Protein kinase C 1	>10,000 >100,	,000
Protein kinase C 2	>10,000 >100,	,000
Protein kinase C	>10,000 >100	,000
Protein kinase C	>100,000 >10	0,000

Crystal structure of Purvalanol B inhibition complex at active site

Hijacking E. coli protein synthesis machinery

Step 1: Generate an orthogonal tRNA that will not be aminoacylated by any native aaRS.

E. coli aaRSs must not charge *S. cerevisiae* (yeast) $tRNA_2^{Gin}$. Pre-charged yeast $tRNA_2^{Gin}$ must function in the *E. coli* ribosome.

Step 2: Generate a mutant aaRS that acylates the new tRNA with any amino acid.

Step 3: Generate a mutant that acylates the new tRNA with only an unnatural amino acid.

Positive and negative selections

Incidental: Develop new method to monitor uptake of unnatural aa which does not require a specific functional group or ¹³C labels.

Liu & PGS, PNAS, 1999, 96, 4780.

Establishing an Orthogonal tRNA

E. coli GInRS does not charge S. cerevisiae (yeast) tRNAGIn.

Whelihan & Schimmel, EMBO J., 1997, 16, 2966-2974.

Does *E. coli* GlnRS charge yeast tRNA₂^{Gln}?

In vitro incubation of two strains of yeast tRNA₂^{Gln} with *E. coli* GlnRS and ³H-labeled-Gln. Orthogonal tRNA aminoacylation was approximately 100,000 times slower than wild-type *E. coli* tRNA₂^{Gln}.

In vivo a strain of *E. coli* requiring Gln suppression at an essential codon for growth on lactose minimal was transformed with either the yeast tRNA₂^{Gln} DNA or that of *supE*, known to function in *E. coli*. The yeast tRNA₂^{Gln}-transform did not survive, even when *E. coli* GlnRS was overexpressed in the plasmid.

Another negative selection was performed using a modified b-lactamase gene which would require the aminoacylation of tRNA₂^{Gln} with any amino acid for ampicillin immunity.

The yeast tRNA₂^{Gin}-transform did not survive in the presence of ampicillin, even when *E. coli* GInRS was overexpressed in the plasmid.

Does yeast tRNA₂^{Gin} function in the *E. coli* ribosome?

When yeast tRNA was chemically preacylated with valine it provided significat quantities of full length protein. Efficiency at 57-74% of normal translation.

Can any GInRS work with the mutant yeast tRNA?

In vitro and in vivo studies show that wild-type yeast GlnRS can acylate mutant yeast tRNA with Gln. The efficiency of amino-acylation is approximately 20% that of the wild-type yeast tRNA. Yeast GlnRS has no ability to acylate *E. coli* tRNA.

Zeroing in on Unnatural Amino Acids

Monitoring Unnatural Amino Acid Uptake

Library of 138 unnatural amino acids assayed for cytotoxicity.

16 of 22 toxic amino acids could be made non-lethal by an excess of a natural amino acid.

Basis of rescue thought to be competition for transport mechanisms.

22 01	138 scree	enea ur	matura	aasa	ind rescu		н	
AA	IC50, μM	Rescue	e AAI	C50, μN	I Rescue	••••••••••••••••••••••••••••••••••••••		
C Q	60 20	Glu	S31 S39	15 <8	Tyr	Ś		
V	50	Ala	S47	20	Gln	l	l	
W	<8	Pro	S50	60	Glu			
BB	400		S60	200	Gln, Glu	2	2	
S2	500	Leu	S78	100	Tyr	0.07	0.17	
S5	50	Lys	S83	20	Glu	S27	S47	
S15	<8		S88	<8				
S26	40	Arg	S89	<8	Met	Toxic glut	Toxic glutamine alleles	
S27	200	Glň	S90	60	Thr	· ·		
S30	<8	Ala	S94	<8				

Qualitative assay for measuring aa uptake: competition to rescue from lethal doses of toxic alleles.

Non-toxic glutamine alleles

Reports of Unnatural Base Pairs

Hydrophobic Bases:

Self-pairing base recognized by *E. coli* DNA polymerase.

PGS, et. al., JACS ,1999, 121, 11585.

Third-Party Mediated Bases:

Cu(II) mediates the Dipic/Py base pair.

PGS, et. al., JACS, 2000, 122, 10714.