An Introduction to Mass-Spectrometry-Based Proteomics

Nick Till

MacMillan Group Meeting 07/29/2020

proteomics: the study of proteomes and their functions (or the large scale study of proteins)

protein measurements can be direct read-outs of biological activity

Franks, A.; Airoldi, E.; Slavov, N. PLOS Computational Biology 2017, 13, e1005535.

10⁴

p53 regulation: mediated by phosphorylation and proteasomal degradation

p53 mRNA transcript levels are a poor indicator of p53 levels and activity

Kruse, J.-P.; Gu, W. Cell 2009, 137, 609-622.

MS-based proteomics: often the tool of choice for large-scale analysis of protein levels and interactions

An Overview of Topics Covered

- Part 1: basic workflow and technology for discovery proteomics
 - How proteins are handled and analyzed
 - Data Peptide assignment and protein inference
- Part 2: methods for (relative) quantitative proteomics
 - Label-free methods
 - Whole-cell isotopic labeling strategies
 - Chemical mass tags
- Part 3: targeted proteomics and its application to biomarker discovery

cells or tissue sample

proteins

proteome analysis

~ 20,000 proteins

(not counting PTMS, alternative splicing)

window ≈ 1500 m/z

direct injection results in high complexity MS

separation step necessary prior to MS analysis

trypsin cleavage: high-specificity serine protease cleaves after K (lysine) or R (arginine) residues

Gundry, R. L.; White, M. Y.; Murray, C. I.; Kane, L. A.; Fu, Q.; Stanley, B. A.; Eyk, J. E. V. Current Protocols in Molecular Biology 2010, 90, 10.25.1-10.25.23.

protease	cleavage specificity ^a
trypsin	-K,R-↑-Z- not -K,R-↑-P-
endoproteinase Lys-C	-K-↑-Z-
chymotrypsin	-W,F,Y-↑-Z- and -L,M,A,D,E-↑-Z- at a slower rate
subtilisin	broad specificity to native and denatured proteins
elastase	-B-↑-Z-
endoproteinase Lys-N	-Z-↑-K-
endoproteinase Glu-C	-E-↑-Z- and 3000 times slower at -D-↑-Z-
endoproteinase Arg-C	-R-↑-Z-
endoproteinase Asp-N	-Z-↑-D- and -Z-↑-cysteic acid- but not -Z-↑-C-
proteinase K	-X-↑-Y-
OmpT	-K,R-†-K,R-
a B – uncharged, non	aromatic amino acids (i.e., A, V, L, I, G, S)

X – aliphatic, aromatic, or hydrophobic amino acids; and Z – any amino acid.

Zhang, Y.; Fonslow, B. R.; Shan, B.; Baek, M.-C.; Yates, J. R. *Chem. Rev.* **2013**, *113*, 2343–2394. Gundry, R. L.; White, M. Y.; Murray, C. I.; Kane, L. A.; Fu, Q.; Stanley, B. A.; Eyk, J. E. V. *Current Protocols in Molecular Biology* **2010**, *90*, 10.25.1-10.25.23.

MS-proteomics sample preparation and workflow

common context-specific modifications

- multiple methods for MS/MS analysis
 - QqQ (triple quadrupole)
 - Q-TOF (quadrupole time-of-flight)
 - Q Exactive (quadrupole orbitrap)
- multiple modes of fragmentation
 - CID (collision-induced dissociation)
 - ECD (electron-capture-dissociation)
 - observed ions depend on method

Q Exactive setup (Thermo Fisher)

this is an idealized picture, in reality fragmentation is incomplete and requires more analysis for peptide ID

Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrometry Reviews 2005, 24, 508-548.

Eng, J. K.; McCormack, A. L.; Yates, J. R. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.

In bottom-up MS-proteomics, peptides (not proteins), are directly measured

Protein inference is the process of extrapolating protein information from peptide measurements

Eng, J. K.; McCormack, A. L.; Yates, J. R. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989.

A and B can be identified

B cannot be identified

sequence homology complicates analysis

- protein families
- alternative splicing
- protein isoforms (and point mutations)

peptide signal poses additional challenge

- Iow intensity ions (especially with DDA)
- small proteins (few tryptic sites)
- PTMs suppress signal

>30% of protein assignments are made based on a single peptide ID

protein sequence coverage

observed peptides in experiments

peptide coverage information and much more available on proteomics databases

An Overview of Topics Covered

- Part 1: basic workflow and technology for discovery proteomics
 - How proteins are handled and analyzed
 - Data Peptide assignment and protein inference
- Part 2: methods for (relative) quantitative proteomics
 - Label-free methods
 - Whole-cell isotopic labeling strategies
 - Chemical mass tags
- Part 3: targeted proteomics and its application to biomarker discovery

Mass spectrometry is not inherently quantitative...

Matrix effects can change signal intensity (as for all MS)

control and perturbed injected separately

- Spectral counting or XIC used to compare abundances of a protein
- Housekeeping proteins are typically utilized for concentration normalization
- Many experimental arms can be compared, but many replicates (high n) often needed

Method 1: label-free quantitative proteomics

Data-dependent acquisition (DDA): only the highest intensity MS¹ precursor ions are selected for MS² analysis

10-20 most intense ions pass to CID cell per MS¹ scan (previously 3-8)

Spectral counting: instances of peptide MS¹ ion observation (verified by MS²) summed up for *relative* quantitation

or

Extracted ion chromatogram (XIC): integrate ion intensity vs. time plot to quantitate peptide (MS¹)

v_g: gas flow directs ions into TIMS (trapped ion mobility spectrometer)

E: electric field opposes gas flow, causing ion trapping

ions eluted by ramping

down electric field strength

mobility depends on collisional cross section (CCS)

Meier, F.; Beck, S.; Grassl, N.; Lubeck, M.; Park, M. A.; Raether, O.; Mann, M. *J. Proteome Res.* **2015**, *14*, 5378–5387 Gabelica, V.; Marklund, E. *Current Opinion in Chemical Biology* **2018**, *42*, 51–59

Method 2: stable isotope labeling with amino acids in cell culture (SILAC)

Ong, S.-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M. *Molecular & Cellular Proteomics* **2002**, *1*, 376–386 Mann, M. *Nature Reviews Molecular Cell Biology* **2006**, *7*, 952–958.

SILAC is well-suited to measure protein turnover kinetics

SILAC is well-suited to measure protein turnover kinetics

No.	Mass	Sequence	Protein	Complete turnover time	t _{1/2}
	amu			h	h
1	1210.7	LLLDVPTAAVQA	y-Interferon-inducible protein IP-30 precursor	6	3
2	1011.5	LLLDVPTAAV	y-Interferon-inducible protein IP-30 precursor	6	3
3	951.6	LLGPRLVLA	TMP21; transmembrane trafficking protein	6	3
4	965.6	ALATLIHQV	COP9 complex subunit 7a	6	5
5	913.6	GLLGTLVQL	Catenin B1	6	5
6	868.5	LLIPGLATA	NADH dehydrogenase (ubiquinone) 1α subcomplex	6	5
7	861.5	ILGPTFTL	3-Hydroxy-3-methylglutaryl-coenzyme A reductase	6	5
8	1037.7	KLLEPVLLL	Similar to 40 S ribosomal protein S16	6	5
9	1034.6	FVFPGELLL	Solute carrier family 1 (neutral amino acid transporter), member 5	6	4
10	910.5	ALPPVLTTV	Unnamed protein product	9	?
11	946.5	SLVEEDALA	Hypothetical protein FLJ30668	9	3
12	1079.7	VLLKARLVPA	NPD019	9	4
13	947.5	ALYVAVVNV	Seven-transmembrane domain protein	9	5
14	1121.5	TLWVDPYEV	B-cell translocation protein 1	9	5
15	959.5	SLFPGQVVI	Polymerase (DNA-directed), α (70 kDa)	9	8
16	974.6	AILPTSIFL	SKB1 homolog	9	4
17	846.5	ALSRITSV	Unknown (protein for MGC:14124)	9	5
18	855.5	ALLGGLVNV	Progestin and adipoQ receptor family member IV	9	6
19	900.5	ALFPGVALL	Protein-disulfide isomerase mER60 precursor	12	8
20	1015.5	FQDPVPLTV	Transcription intermediary factor 1	18	12
21	1032.5	ALPEIFTEL	Similar to eukaryotic translation initiation factor 2, 26 subunit 3γ, 52 kDa	24	4
22	1094.6	SLLPPDALVGL	Sec23 protein	24	11
23	1360.7	ALWDIETGQQTV	Guanine nucleotide-binding protein, β -2 subunit	24	12
24	1115.5	SLFEGTWYL	Hydroxymethylglutaryl-CoA synthase	24	15
25	969.6	VIAEILRGV	Nucleolar protein 5A	24	20
26	984.5	ALMPVLNQV	Homolog of yeast mRNA transport regulator 3	48	6
27	908.5	NLDTSVFI	Similar to RIKEN cDNA 2610003J06	48	12
28	1258.6	FLFDGSPTYVL	Fatty-acid synthase	48	15
29	989.5	ILGGSLFGLL	ET putative translation product	48	23
30	968.6	SLLDPVPEV	Similar to RIKEN cDNA G431004K08	48	24
31	1020.6	FLSSVIQNL	Proteasome 26 S non-ATPase subunit 1	96	6
32	1038.6	YLLPAIVHI	DEAD box polypeptide 17 isoform p82; probable	96	11
			RNA-dependent helicase p72		
33	929.5	SLLDKIIGA	Polymerase I and transcript release factor	96	14
34	1049.6	VLMQDLAFL	Unnamed protein product	96	52
35	786.4	SLAGGILGV	Protein similar to heterogeneous nuclear ribonucleoprotein K	?	24

Milner, E.; Barnea, E.; Beer, I.; Admon, A. *Molecular & Cellular Proteomics* **2006**, *5*, 357–365 Mann, M. *Nature Reviews Molecular Cell Biology* **2006**, *7*, 952–958.

Method 3: chemical labelling with isotopically-labeled tags

Current state-of-the-art: isobaric mass tags (iTRAQ, TMT)

Method 3: chemical labelling with isotopically-labeled tags

Up to 11-plex possible today I ¹³C and ¹⁵N, no ²H used I High resolution MS² needed

PROTACs cause changes in expression levels at the proteome level

How can these changes be assigned to degradation or transcriptional regulation?

Welle, K. A.; Zhang, T.; Hryhorenko, J. R.; Shen, S.; Qu, J.; Ghaemmaghami, S. *Molecular & Cellular Proteomics* **2016**, *15*, 3551–3563. Savitski, M. M.; Zinn, N.; Faelth-Savitski, M.;...Bantscheff, M. Cell **2018**, *173*, 260-274.e25

Combining SILAC and TMT to study protein regulation mechanisms

Savitski, M. M.; Zinn, N.; Faelth-Savitski, M.;...Bantscheff, M. Cell 2018, 173, 260-274.e25

FYTDD1 critical for mRNA nuclear export, hence protein synthesis

off target degradation by JQ1-VHL

MS-based protein stability/small molecule binding assay

direct interaction between JQ1-VHL and FYTDD1 confirmed,

new PROTAC prepared without off-target activity

Savitski, M. M.; Zinn, N.; Faelth-Savitski, M.;...Bantscheff, M. Cell 2018, 173, 260-274.e25

Reductive Dimethylation: alternative chemical labeling strategy with stable isotopes

Hsu, J.-L.; Huang, S.-Y.; Chow, N.-H.; Chen, S.-H. *Anal. Chem.* **2003**, *75*, 6843–6852 Savitski, M. M.; Zinn, N.; Faelth-Savitski, M.;...Bantscheff, M. *Cell* **2018**, *173*, 260-274.e25

An Overview of Topics Covered

- Part 1: basic workflow and technology for discovery proteomics
 - How proteins are handled and analyzed
 - Data Peptide assignment and protein inference
- Part 2: methods for (relative) quantitative proteomics
 - Label-free methods
 - Whole-cell isotopic labeling strategies
 - Chemical mass tags
- Part 3: targeted proteomics and its application to biomarker discovery

Beyond DDA-based Shotgun Proteomics

"holey" data with DDA

low coverage with SRM

R1 R2 R3	R1 R3 R3	R1 R2 R3	R2 R3 R3	R1 R2 R3	R2 R3 R3	R1 R2 R3	R1 R2 R3
S1	S2	S3	S4	S5	S6	S7	S8

better coverage with DIA

DDA: most common approach to discovery proteomics, hypothesis-free

SRM: accurate, reproducible quantitation of up to ~500 peptides (chosen)

DIA: accurate, reproducible, deep coverage, but requires a DDA measurement first

Bruderer, R.; Bernhardt, O. M.; Gandhi, T.;...Reiter, L. *Molecular & Cellular Proteomics* **2015**, *14*, 1400–1410 Liu, Y.; Hüttenhain, R.; Collins, B.; Aebersold, R. *Expert Review of Molecular Diagnostics* **2013**, *13*, 811–825

Biomarkers "generate clinically useful information that could be used to change the course of the disease for a patient"

biomarker signature development

utilizes targeted proteomics