An Introduction to
Mass-Spectrometry-Based Proteomics

Nick Till
MacMillan Group Meeting 07/29/2020
The Broader Context for MS-Based Proteomics

Protein-Interaction Networks

- Core-complex protein
- Bait protein
- Weak-interactor protein

Subcellular Localization

- Mitochondrion
- Cytosol
- Nucleus
- Lysosome
- Endoplasmic reticulum

Activity-based Profiling

- Reactive group
- Reporter group
- ABPP probe

Biomarker Discovery

- Patients with signs and symptoms of the same cancer
- Measure biomarkers
- Patients with high and low levels
- Patients with low and high levels
proteomics: the study of proteomes and their functions (or the large scale study of proteins)

protein measurements can be direct read-outs of biological activity
The Broader Context for MS-Based Proteomics

DNA

RNA

RNAseq: transcript levels with good coverage

transcript levels can be misleading in predicting protein levels

protein

- translational efficiency
- post-translational modifications
- protein degradation kinetics can vary

p53 regulation: mediated by phosphorylation and proteasomal degradation

p53 mRNA transcript levels are a poor indicator of p53 levels and activity
The Broader Context for MS-Based Proteomics

Large-Scale Yeast 2-Hybrid

- Large-scale identification of PPIs

Protein Microarrays

- Large-scale protein-binding studies

MS-based proteomics: often the tool of choice for large-scale analysis of protein levels and interactions

An Overview of Topics Covered

- Part 1: basic workflow and technology for discovery proteomics
 - How proteins are handled and analyzed
 - Data Peptide assignment and protein inference

- Part 2: methods for (relative) quantitative proteomics
 - Label-free methods
 - Whole-cell isotopic labeling strategies
 - Chemical mass tags

- Part 3: targeted proteomics and its application to biomarker discovery
Technology Development and Workflow for MS Proteomics

cells or tissue sample → proteins → samples

proteins

proteome analysis
Technology Development and Workflow for MS Proteomics

~20,000 proteins
(not counting PTMS, alternative splicing)

Intensity

m/z

window ≈ 1500 m/z

direct injection results in high complexity MS

separation step necessary prior to MS analysis
Technology Development and Workflow for MS Proteomics

image analysis identifies up/down regulation

isolate spot from gel

protein ID by MS

Technology Development and Workflow for MS Proteomics

- Protein MW > 10,000 Da
- Poor recovery by LC
- Peptide MWs < 4,000 Da
- Good recovery across peptides

"Bottom-up proteomics" data analysis involves reconstructing protein identity.

Peptide fragments (incomplete) → Protein identity

Data analysis involves reconstructing protein (protein inference)
Technology Development and Workflow for MS Proteomics

trypsin cleavage: high-specificity serine protease cleaves after K (lysine) or R (arginine) residues

Technology Development and Workflow for MS Proteomics

N-terminus—AVTKWGSRAGPAVTKKEIGAASTQVRAGDSLQPKGTVALER
N-terminus—AVTKWGSRAGPAVTKKEIGAASTQVRAGDSLQPKGTVALER

large mixture of tryptic peptides are then subjected to LC/MS² analysis

<table>
<thead>
<tr>
<th>protease</th>
<th>cleavage specificity¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>trypsin</td>
<td>-K,R,t1-Z; not -K,R,t1-P;</td>
</tr>
<tr>
<td>endoproteinase Lys-C</td>
<td>-K,t1-Z;</td>
</tr>
<tr>
<td>chymotrypsin</td>
<td>-W,F,Y,t1-Z; and -L,M,A,D,E,t1-Z; at a slower rate</td>
</tr>
<tr>
<td>subtilisin</td>
<td>broad specificity to native and denatured proteins</td>
</tr>
<tr>
<td>elastase</td>
<td>-B,t1-Z;</td>
</tr>
<tr>
<td>endoproteinase Lys-N</td>
<td>-Z,t1-K;</td>
</tr>
<tr>
<td>endoproteinase Glu-C</td>
<td>-E,t1-Z; and 3000 times slower at -D,t1-Z;</td>
</tr>
<tr>
<td>endoproteinase Arg-C</td>
<td>-R,t1-Z;</td>
</tr>
<tr>
<td>endoproteinase Asp-N</td>
<td>-Z,t1-D; and -Z,t1-cysteic acid; but not -Z,t1-C;</td>
</tr>
<tr>
<td>proteinase K</td>
<td>-X,t1-Y;</td>
</tr>
<tr>
<td>OmpT</td>
<td>-K, R,t1-K, R;</td>
</tr>
</tbody>
</table>

¹B = uncharged, nonaromatic amino acids (i.e., A, V, L, I, G, S)

X = aliphatic, aromatic, or hydrophobic amino acids; and Z = any amino acid.

Technology Development and Workflow for MS Proteomics

MS-proteomics sample preparation and workflow

Cells or tissue → Proteins → Peptides → UHPLC → Mass spectrometer

Step 1: Extraction
Step 2*: Digestion
Step 3*: Enrichment for PTMs

common context-specific modifications

subcellular fractionation
protein interactions
enrichment for PTMs

Meissner, F.; Mann, M. Nature Immunology 2014, 15, 112–117.
Technology Development and Workflow for MS Proteomics

MS/MS (MS²) analysis: peptides are further fragmented into ions for sequence identification

- multiple methods for MS/MS analysis
 - QqQ (triple quadrupole)
 - Q-TOF (quadrupole time-of-flight)
 - Q Exactive (quadrupole orbitrap)

- multiple modes of fragmentation
 - CID (collision-induced dissociation)
 - ECD (electron-capture-dissociation)
 - observed ions depend on method

Q Exactive setup (Thermo Fisher)

- collision cell (fragmentation)
- quadrupole (mass filter)
- orbitrap (mass detector)
- nanospray (ionization)
Technology Development and Workflow for MS Proteomics

This is an idealized picture, in reality fragmentation is incomplete and requires more analysis for peptide ID.
observed MS2 spectrum

database candidate 1

missing peaks penalized

database candidate 2

low intensity
low score

database candidate 3

perfect match

observed peptide MS2 spectra are scored against database MS2 spectra to identify parent ion

- SEQUEST
- MASCOT
- OMSSA
- X!Tandem
- MaxQuant

Technology Development and Workflow for MS Proteomics

In bottom-up MS-proteomics, peptides (not proteins), are directly measured.

Protein inference is the process of extrapolating protein information from peptide measurements.

Technology Development and Workflow for MS Proteomics

A and B can be identified

B cannot be identified

sequence homology complicates analysis
- protein families
- alternative splicing
- protein isoforms (and point mutations)

peptide signal poses additional challenge
- low intensity ions (especially with DDA)
- small proteins (few tryptic sites)
- PTMs suppress signal

>30% of protein assignments are made based on a single peptide ID

Technology Development and Workflow for MS Proteomics

peptide coverage information and much more available on proteomics databases

- jPOST
- MassIVE
- ProteomicsDB
- PeptideAtlas
- MaxQB
An Overview of Topics Covered

- **Part 1: basic workflow and technology for discovery proteomics**
 - How proteins are handled and analyzed
 - Data Peptide assignment and protein inference

- **Part 2: methods for (relative) quantitative proteomics**
 - Label-free methods
 - Whole-cell isotopic labeling strategies
 - Chemical mass tags

- **Part 3: targeted proteomics and its application to biomarker discovery**
Digestion efficiency is protein-dependent:
 relative amounts of A and B may not
 be reflected by [peptide]

Ionization efficiencies vary by >100-fold

Matrix effects can change signal intensity (as for all MS)
Spectral counting or XIC used to compare abundances of a protein

Housekeeping proteins are typically utilized for concentration normalization

Many experimental arms can be compared, but many replicates (high n) often needed
Methods and Applications of Quantitative MS-Proteomics

Method 1: label-free quantitative proteomics

Data-dependent acquisition (DDA): only the highest intensity MS1 precursor ions are selected for MS2 analysis

10-20 most intense ions pass to CID cell per MS1 scan (previously 3-8)

Spectral counting: instances of peptide MS1 ion observation (verified by MS2) summed up for relative quantitation

or

Extracted ion chromatogram (XIC): integrate ion intensity vs. time plot to quantitate peptide (MS1)
νₔ: gas flow directs ions into TIMS (trapped ion mobility spectrometer)

E: electric field opposes gas flow, causing ion trapping

mobility depends on collisional cross section (CCS)

ions eluted by ramping down electric field strength
Methods and Applications of Quantitative MS-Proteomics

Advantages of TIMS-TOF technology

- Added dimension of separation
- Faster scanning speed
- Deeper protein coverage
 (can ID 2000 proteins from 10 cells of material)

Separation based on CCS is impressive

Method 2: stable isotope labeling with amino acids in cell culture (SILAC)

controls for ionization efficiency
differences and matrix effects

trypsin cut sites

...AVTKWGSRAGPAVTKEIGAASTQVRAGDSLQPKGTVALER...

\(^{13}\text{C}_6\text{Lys and }^{13}\text{C}_6^{15}\text{N}_2\text{Arg are optimal}\)
SILAC is well-suited to measure protein turnover kinetics

- heavy peptide signal decreases with time
- light peptide signal increases with time

MHC class I peptide display

- important for self/non-self recognition, tumor immunity
- peptide display requires proteasomal degradation

SILAC is well-suited to measure protein turnover kinetics

<table>
<thead>
<tr>
<th>No.</th>
<th>Mass</th>
<th>Sequence</th>
<th>Protein</th>
<th>Complete turnover time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1210.7</td>
<td>LLDVPTAAVQA</td>
<td>γ-Interferon-inducible protein IP-30 precursor</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1011.5</td>
<td>LLDVPTAAV</td>
<td>γ-Interferon-inducible protein IP-30 precursor</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>951.6</td>
<td>LLGPRLVLA</td>
<td>TMP21; transmembrane trafficking protein</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>965.6</td>
<td>ALATUHQV</td>
<td>COP9 complex subunit 7a</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>913.6</td>
<td>GILLTLVQL</td>
<td>Catenin β1</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>885.8</td>
<td>LLLPQLATA</td>
<td>NADH dehydrogenase (ubiquinone) 1α subcomplex</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>861.5</td>
<td>ILQFTTL</td>
<td>3-Hydroxy-3-methylglutaryl-coenzyme A reductase</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>1037.7</td>
<td>KLLLEPVLL</td>
<td>Similar to 40 S ribosomal protein S16</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>1034.6</td>
<td>FVFPHELIL</td>
<td>Solute carrier family 1 (neutral amino acid transporter), member 5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>910.5</td>
<td>ALPPVLT</td>
<td>Unnamed protein product</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>946.5</td>
<td>SLVEEADLA</td>
<td>Hypothetical protein FLJ30668</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>1079.7</td>
<td>VLLKARLVPFA</td>
<td>NPD019</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>947.5</td>
<td>ALYYAVNNV</td>
<td>Seven-transmembrane domain protein</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>1121.5</td>
<td>TLWVPVEV</td>
<td>B-cell translocation protein 1</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>959.5</td>
<td>SLFGGVVI</td>
<td>Polymerase (DNA-directed), α (70 kDa)</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>974.6</td>
<td>AILPTSIFL</td>
<td>SKB1 homolog</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>846.5</td>
<td>ALRSITSV</td>
<td>Unknown (protein for MGC:14124)</td>
<td>9</td>
</tr>
<tr>
<td>18</td>
<td>885.5</td>
<td>ALVGLNV</td>
<td>Progestin and adipQ receptor family member IV</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>900.5</td>
<td>ALFGVALL</td>
<td>Protein-disulfide isomerase mER80 precursor</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>1015.5</td>
<td>FDVPVLTV</td>
<td>Transcription intermediary factor 1</td>
<td>18</td>
</tr>
<tr>
<td>21</td>
<td>1032.5</td>
<td>ALPEFTEL</td>
<td>Similar to eukaryotic translation initiation factor 2, 26 subunit 3γ, 52 kDa</td>
<td>24</td>
</tr>
<tr>
<td>22</td>
<td>1094.6</td>
<td>SLPPDIALVG</td>
<td>SEC23 protein</td>
<td>24</td>
</tr>
<tr>
<td>23</td>
<td>1306.7</td>
<td>ALWDETQGTV</td>
<td>Guanine nucleotide-binding protein, β-2 subunit</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>1115.5</td>
<td>SLFEGTWL</td>
<td>Hydroxymethylglutaryl-CoA synthase</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>999.6</td>
<td>VIAELRGV</td>
<td>Nucleolar protein 5A</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td>984.5</td>
<td>ALMPVLNOV</td>
<td>Homolog of yeast mRNA transport regulator 3</td>
<td>48</td>
</tr>
<tr>
<td>27</td>
<td>908.5</td>
<td>NLTSVFI</td>
<td>Similar to RIKEN cDNA 2610003J06</td>
<td>48</td>
</tr>
<tr>
<td>28</td>
<td>1258.6</td>
<td>FLFGSPTYVL</td>
<td>Fatty-acid synthase</td>
<td>48</td>
</tr>
<tr>
<td>29</td>
<td>999.5</td>
<td>ILQGSSFLG</td>
<td>ET putative translation product</td>
<td>48</td>
</tr>
<tr>
<td>30</td>
<td>968.6</td>
<td>SLDPVEV</td>
<td>Similar to RIKEN cDNA 431004K08</td>
<td>48</td>
</tr>
<tr>
<td>31</td>
<td>1020.8</td>
<td>FLRSIVQNL</td>
<td>Proteasome 26 S non-ATPase subunit 1</td>
<td>96</td>
</tr>
<tr>
<td>32</td>
<td>1038.6</td>
<td>YLLPAVHI</td>
<td>DEAD box polypeptide 17 isoform p82; probable</td>
<td>96</td>
</tr>
<tr>
<td>33</td>
<td>929.5</td>
<td>SLDDKIGA</td>
<td>RNA-dependent helicase p72</td>
<td>96</td>
</tr>
<tr>
<td>34</td>
<td>1049.6</td>
<td>VLQDLAFFL</td>
<td>Polymerase I and transcript release factor</td>
<td>96</td>
</tr>
<tr>
<td>35</td>
<td>786.4</td>
<td>SLAGGLGV</td>
<td>Protein similar to heterogeneous nuclear ribonucleoprotein K</td>
<td>24</td>
</tr>
</tbody>
</table>

Methods and Applications of Quantitative MS-Proteomics

Milner, E.; Barnea, E.; Beer, I.; Admon, A. Molecular & Cellular Proteomics 2006, 5, 357–365
Methods and Applications of Quantitative MS-Proteomics

Method 3: chemical labelling with isotopically-labeled tags

1. combine samples
2. compare heavy/light conjugates (MS)

Current state-of-the-art: isobaric mass tags (iTRAQ, TMT)

\[\text{reporter ion} + \text{mass normalizer} = \text{constant} \]

- sites of 15N and 13C labels

Methods and Applications of Quantitative MS-Proteomics

Method 3: chemical labelling with isotopically-labeled tags

- Up to 11-plex possible today
- 13C and 15N, no 2H used
- High resolution MS2 needed

Rauniyar, N.; Yates, J. R. J. Proteome Res. 2014, 13, 5293–5309
Methods and Applications of Quantitative MS-Proteomics

PROTACs cause changes in expression levels at the proteome level

How can these changes be assigned to degradation or transcriptional regulation?

Savitski, M. M.; Zinn, N.; Faelt-Savitski, M.;…Bantscheff, M. Cell 2018, 173, 260-274.e25
Combining SILAC and TMT to study protein regulation mechanisms

Methods and Applications of Quantitative MS-Proteomics
FYTDD1 critical for mRNA nuclear export, hence protein synthesis

off target degradation by JQ1-VHL
Methods and Applications of Quantitative MS-Proteomics

MS-based protein stability/small molecule binding assay

direct interaction between JQ1-VHL and FYTDD1 confirmed,
new PROTAC prepared without off-target activity
Reductive Dimethylation: alternative chemical labeling strategy with stable isotopes

Methods and Applications of Quantitative MS-Proteomics

- **13CD2H or 12CH3**

Image Description:

- T cells are labeled with SILAC light.
- (1) Vehicle change to SILAC heavy.
- (2) Vehicle SILAC light.
- (3) HSP90 inhibitor change to SILAC heavy.

Chemical Structures:

-

Graphs:

- **Protein turnover, vehicle control**
 - Signal in MS^1
 - Degradation
 - New synthesis

- **Protein turnover, HSP90 inhibitor**
 - Signal in MS^1
 - Degradation
 - New synthesis

Log2 protein FC

- **Mature**
 - Treatment vs. vehicle control (donor 1)
- **Nascent**
 - Treatment vs. vehicle control (donor 2)

References:

- Savitski, M. M.; Zinn, N.; Faelth-Savitski, M.;...Bantscheff, M. *Cell* 2018, 173, 260-274.e25
An Overview of Topics Covered

- Part 1: basic workflow and technology for discovery proteomics
 - How proteins are handled and analyzed
 - Data Peptide assignment and protein inference

- Part 2: methods for (relative) quantitative proteomics
 - Label-free methods
 - Whole-cell isotopic labeling strategies
 - Chemical mass tags

- Part 3: targeted proteomics and its application to biomarker discovery
Beyond DDA-based Shotgun Proteomics

DDA: most common approach to discovery proteomics, hypothesis-free

SRM: accurate, reproducible quantitation of up to ~500 peptides (chosen)

DIA: accurate, reproducible, deep coverage, but requires a DDA measurement first

Technology Development and Workflow for MS Proteomics

Biomarkers “generate clinically useful information that could be used to change the course of the disease for a patient”

- Biomarker signature development utilizes targeted proteomics