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Timescales of Molecular Events
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Molecular Systems Studied with Ultrafast Spectroscopy

photosynthetic 
light-harvesting 

complexes

short timescale processes

� Energy transfer (EnT)
� Electron transfer (ET)
� Photoluminescence (PL) 
��Internal conversion (IC)
��Intersystem crossing (ISC)
� Proton transfer 
� Bond isomerization

materials science

excited-state organometallic chemistry
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Taking Snapshots of Ultrafast Molecular Dynamics

processed
data

t = 0 s t = 0.5 s

t = 1.5 st = 1.0 s

flight can be reconstructred from multiple snapshots of the process taken at different delays

detector requirements

• fast shutter speed 
(short laser pulse)

• short delays



Experimental Setup and Hardware

Crucial Features

• spatial and temporal overlap
 of pump/probe

• short pulse duration

• short pulse delay 
(ps-μs timescale)

• stable, broad spectrum probe
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pump

visible light

probe

• white light
• broadband IR
• XAS (X-ray Absorption)
• NMR



Origin of the Ground State Bleach (GSB) Feature
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Origin of the Excited State Absorption (ESA) Feature
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Origin of the Excited State Absorption (ESA) Feature

Excited State Absorption - positive signal in ΔΑ spectrum
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Overview of Commonly Observed ΔΑ Features

GSB and SE features often overlap in wavelength - can be hard to distinguish within negative feature



Representation and Handling of 3-Dimensional Data

contour plot/heat map
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t (ps)
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700 nm (ESA)530 nm (GSB)

single-wavelength analysis

single-timepoint analysis

λ (nm)

ΔA
��multiple ways to visualize data
� multiple single-timepoint
    traces may be most common

 
Glotaran Data Analysis Software
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Kinetic Models for Excited State Decay

*
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��more complicated combinations of these simple models can be invoked

��beware of overfitting: complex models can fit data well, but be unphysical

choice of model precedes fitting process:
some intuition or physical knowledge required

branched model sequential model
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Atom-Transfer Radical Polymerization with an Organic Photocatalyst
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Bimolecular Excited-State Dynamics of PCF by TVAS and TEAS
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Excited State Electron Transfer Rates for PCF and PCH
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plots of 1/τ v.s. [MBP] reveals kPET values for PCF and PCH
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��biexponential fit of the PET kinetics for PCH reveals static PET (within 7-17 ps) to MBP
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Time-Correlated Single Photon Counting (TCSPC)

� Method of choice for determining excited state lifetimes of luminescent molecules
     with lifetimes as low as 10 ns

� Requires 1-6 hours per experiment, depending on phosphorescence intensity

Experimental Setup

counts v. time (log scale)

Wei, L.; Yan, W.; Ho, D. Sensors 2017, 17, 2800.



Energy Transfer Between Transition Metal Centers

Ir

Ir
*

+ Ni Ir + Ni
*EnT

+ Ni

relaxation

krelax >> kenT

inverted kinetics

Ni* cannot be observed

hν

if krelax > 109 s–1, we cannot observe the build up of Ni* since kEnT is diffusion-limited

Ir
*

Ni

kEnT no longer diffusion-limited

Schallenberg, D.; Neubauer, A.; Erdmann, E.; Tänzler, M.; Villinger, A.; Lochbrunner, S.; Seidel, W. W. Inorg. Chem. 2014, 53, 8859–8873.



Observation of Partial Quenching of Excited-State Iridium

φPL = 0.17 (±0.02) 

τ = 640 ns (±60 ns)
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φPL = 0.011 (±0.002) 
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��excited state elctron transfer ruled out by electro- and spectroelectrochemical experiments

anomalous lowered photoluminescence
with unchanged lifetime (τ)

proposed mechanism

• EnT quenches excited state

• EnT must compete with IC

• requires EnT to be on ps timescale

Schallenberg, D.; Neubauer, A.; Erdmann, E.; Tänzler, M.; Villinger, A.; Lochbrunner, S.; Seidel, W. W. Inorg. Chem. 2014, 53, 8859–8873.

z��excited state reduction of Ni ruled out by electro- and spectroelectrochemical experiments
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Observation of Ultrafast EnT from Ir(ppy)2(phen) to CoCp
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��excited state dynamics of Ir-Co complex mirrors that of isolated Co center: implies Ir–Co EnT
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dynamics of isolated Co center388 nm excitation
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Photophysics of Excited-State CuI(phen) Complexes
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��large Stokes shift
��excited-state lifetime modulated 
     by phenanthroline substituents

CuI(dmphen)2PF6

Me
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��structurally related CuI complexes have been implicated in photocatalytic transformations

photophysical model

��excited state is characterized as MLCT, and quenched by ET and EnT mechanisms



Molecular Basis for Time-Resolved Fluorescence Spectroscopy

photophysical model
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��two solutions are often implemented: an optical Kerr shutter, and photon upconversion

��time resolution of detector technology does not permit this approach to measuring fast dynamics
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Experimental Setup for Time Resolved Fluorescence via Upconversion

photon upconversion setup gate pulse + fluorescence
must overlap

gate pulse takes slices 
out of fluorescence signal
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Steady-State and Time-Resolved Emission Spectra of CuI(dmphen)2PF6
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��lower oscillator strength at 550 nm, but higher fluorescence intensity: branching kinetics?z��lower oscillator strength at 550 nm, but higher fluorescence intensity: branching kinetics?



Excited-State Dynamics of CuI(dmphen)2PF6 by Fluorescence Upconversion

��branching model fits fluorescence decay kinetics and reveals long-lived flattened S1 state

fitting
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Useful References and Reviews on Ultrafast Measurements

ultrafast laser pulseseverything photophysicstripletes and fluorescence

textbooks

��more on CuI(phen)2 excited-state rearrangements: Acc. Chem. Res. 2015, 48, 782–791.

��good primer on TEAS, and time-resolved fluorescence spectroscopies: http://web.vu.lt/ff/m.vengris/

��review on fitting data from ultrafast measurements: 
    Biochimica et Biophysica Acta (BBA) - Bioenergetics 2004, 1657, 82–104.


