Ultrafast Spectroscopic Methods:

Fundamental Principles and Applications in Photocatalysis

Nick Till

MacMillan Group Meeting

May 25, 2018

Timescales of Molecular Events

Molecular Systems Studied with Ultrafast Spectroscopy

photosynthetic light-harvesting complexes

materials science

Shields, B. J.; Kudisch, B.; Scholes, G. D.; Doyle, A. G. *J. Am. Chem. Soc.* 2018, 140, 3035–3039.
Mirkovic, T.; Ostroumov, E. E.; Anna, J. M.; van Grondelle, R.; Govindjee; Scholes, G. D. *Chem. Rev.* 2017, 117, 249–293.
Mongin, C.; Moroz, P.; Zamkov, M.; Castellano, F. N. *Nature Chemistry* 2018, 10, 225–230.

Outline for the Presentation

Basics of Transient Absorption Spectroscopy

- physicsl basis for observed spectral changes
- experimental setup
- data analysis

Case Study 1: Excited State Dynamics in a Photocatalytic Polymerizaiton

original hypothesis and revised mechanism

Case Study 2: Observation of an Ultrafast Energy Transfer Event

- Intro to TCSPC (time-correlated single photon counting)
- excited-state lifetime measurements and TEAS measurements reveal EnT event

Case Study 3: Excited-State Conformational Changes in Cu¹ Complexes

- physical basis for time-resolved fluorescence spectroscopy
- experimental apparatus for ultrafast fluorescence measurements

Taking Snapshots of Ultrafast Molecular Dynamics

flight can be reconstructred from multiple snapshots of the process taken at different delays

processed data

detector requirements —
fast shutter speed (short laser pulse)
short delays

Experimental Setup and Hardware

Crucial Features

- spatial and temporal overlap of pump/probe
- short pulse duration
- short pulse delay (ps-µs timescale)
- stable, broad spectrum probe

Origin of the Ground State Bleach (GSB) Feature

Origin of the Excited State Absorption (ESA) Feature

Origin of the Excited State Absorption (ESA) Feature

Overview of Commonly Observed ΔA Features

GSB and **SE** features often overlap in wavelength - can be hard to distinguish within negative feature

Representation and Handling of 3-Dimensional Data

Glotaran Data Analysis Software

Outline for the Presentation

Basics of Transient Absorption Spectroscopy

- physicsl basis for observed spectral changes
- experimental setup
- data analysis

Case Study 1: Excited State Dynamics in a Photocatalytic Polymerizaiton

- original hypothesis and revised mechanism
- Case Study 2: Observation of an Ultrafast Energy Transfer Event
 - Intro to TCSPC (time-correlated single photon counting)
 - excited-state lifetime measurements and TEAS measurements reveal EnT event
- **Case Study 3: Excited-State Conformational Changes in Cu¹ Complexes**
 - physical basis for time-resolved fluorescence spectroscopy
 - experimental apparatus for ultrafast fluorescence measurements

Atom-Transfer Radical Polymerization with an Organic Photocatalyst

Bimolecular Excited-State Dynamics of PCF by TVAS and TEAS

Koyama, D.; Dale, H. J. A.; Orr-Ewing, A. J. J. Am. Chem. Soc. 2018, 140, 1285–1293.

biexponential fit of the PET kinetics for PCH reveals static PET (within 7-17 ps) to MBP

Koyama, D.; Dale, H. J. A.; Orr-Ewing, A. J. J. Am. Chem. Soc. 2018, 140, 1285–1293.

Outline for the Presentation

Basics of Transient Absorption Spectroscopy

- physicsl basis for observed spectral changes
- experimental setup
- data analysis

Case Study 1: Excited State Dynamics in a Photocatalytic Polymerizaiton

• original hypothesis and revised mechanism

Case Study 2: Observation of an Ultrafast Energy Transfer Event

- Intro to TCSPC (time-correlated single photon counting)
- excited-state lifetime measurements and TEAS measurements reveal EnT event
- **Case Study 3: Excited-State Conformational Changes in Cu¹ Complexes**
 - physical basis for time-resolved fluorescence spectroscopy
 - experimental apparatus for ultrafast fluorescence measurements

Time-Correlated Single Photon Counting (TCSPC)

Method of choice for determining excited state lifetimes of *luminescent* molecules with lifetimes as low as 10 ns

Requires 1-6 hours per experiment, depending on phosphorescence intensity

if $k_{relax} > 10^9 \text{ s}^{-1}$, we cannot observe the build up of Ni* since k_{EnT} is diffusion-limited

Schallenberg, D.; Neubauer, A.; Erdmann, E.; Tänzler, M.; Villinger, A.; Lochbrunner, S.; Seidel, W. W. Inorg. Chem. 2014, 53, 8859–8873.

Observation of Partial Quenching of Excited-State Iridium

Excited state reduction of Ni ruled out by electro- and spectroelectrochemical experiments

Schallenberg, D.; Neubauer, A.; Erdmann, E.; Tänzler, M.; Villinger, A.; Lochbrunner, S.; Seidel, W. W. Inorg. Chem. 2014, 53, 8859–8873.

Observation of Ultrafast EnT from Ir(ppy)₂(phen) to CoCp

Excited state dynamics of Ir-Co complex mirrors that of isolated Co center: implies Ir-Co EnT

Outline for the Presentation

Basics of Transient Absorption Spectroscopy

- physicsl basis for observed spectral changes
- experimental setup
- data analysis

Case Study 1: Excited State Dynamics in a Photocatalytic Polymerizaiton

original hypothesis and revised mechanism

Case Study 2: Observation of an Ultrafast Energy Transfer Event

- Intro to TCSPC (time-correlated single photon counting)
- excited-state lifetime measurements and TEAS measurements reveal EnT event

Case Study 3: Excited-State Conformational Changes in Cu¹ Complexes

- physical basis for time-resolved fluorescence spectroscopy
- experimental apparatus for ultrafast fluorescence measurements

Photophysics of Excited-State Cu^I(phen) Complexes

Cu^l(dmphen)₂PF₆

- Excited-state lifetime modulated
 - by phenanthroline substituents

photophysical model

Compound	λ_{abs} (nm) (ϵ) ^b	λ_{PL} (nm) ^c	${\Phi^{\rm d}_{ m PL}} imes 10^4$	τ (ns)°	$\Delta G_{\rm es}^{\rm f}$ (eV)	$E_{1.2}^{g}$	$E_{y_7}^{*h}$
$Cu(phen)_2(PF_6)$	458 (6880)	_	-	<10	-	0.19	~
$Cu(dmp)_2(PF_6)$	454 7950)	740	2.3	85	2.04	0.64	-1.4
$Cu(dpp)_2(PF_6)$	448 (3440)	715	9.7	250	1.99	0.58	-1.4
$Cu(bcp)_2(PF_6)$	478 (13 200)	765	1.5	70	1.98	0.58	-1.4

Excited state is characterized as MLCT, and quenched by ET and EnT mechanisms

structurally related Cu^I complexes have been implicated in photocatalytic transformations

Ruthkosky, M.; Kelly, C. A.; Castellano, F. N.; Meyer, G. J. *Coordination Chemistry Reviews* **1998**, *171*, 309–322. Scaltrito, D. V.; Thompson, D. W.; O'Callaghan, J. A.; Meyer, G. J. *Coordination Chemistry Reviews* **2000**, *208*, 243–266.

Molecular Basis for Time-Resolved Fluorescence Spectroscopy

Time resolution of detector technology does not permit this approach to measuring fast dynamics
 Two solutions are often implemented: an optical Kerr shutter, and photon upconversion

Experimental Setup for Time Resolved Fluorescence via Upconversion

$$I_{upconv}(t) \sim I_{gate}(t) \times I_{fluorescence}(t)$$

Steady-State and Time-Resolved Emission Spectra of Cu^I(dmphen)₂PF₆

Iower oscillator strength at **550 nm**, but higher fluorescence intensity: **branching kinetics?**

Iwamura, M.; Takeuchi, S.; Tahara, T. J. Am. Chem. Soc. 2007, 129, 5248–5256.

Excited-State Dynamics of Cu^I(dmphen)₂PF₆ by Fluorescence Upconversion

Interpretending model fits fluorescence decay kinetics and reveals long-lived flattened S₁ state

Iwamura, M.; Takeuchi, S.; Tahara, T. J. Am. Chem. Soc. 2007, 129, 5248–5256.

Useful References and Reviews on Ultrafast Measurements

■ more on Cu^I(phen)₂ excited-state rearrangements: *Acc. Chem. Res.* **2015**, *48*, 782–791.

• good primer on TEAS, and time-resolved fluorescence spectroscopies: http://web.vu.lt/ff/m.vengris/

textbooks

review on fitting data from ultrafast measurements:

Biochimica et Biophysica Acta (BBA) - Bioenergetics 2004, 1657, 82–104.

tripletes and fluorescence

everything photophysics

ultrafast laser pulses