

Nate Dow Group Meeting Literature Talk April 13, 2020

Outline

Introduction and General Considerations

- Discovery and fundamentals
- Contributions to rotational barriers
- Pharmaceutical considerations

Methods of (Catalytic) Synthesis

- Diastereoselective methods
- Dynamic kinetic resolutions and desymmetrization
- Redox-neutral cross-oupling
- Oxidative cross-oupling

Applications

• Case Study: Tryptorubin A

Atropos (Greek) - "Without Turn"

Atropisomers: stereoisomers caused by restricted rotation around a single bond (a subset of axially chiral compounds)

strained coplanar transition state

Atropos (Greek) - "Without Turn"

Atropisomers: stereoisomers caused by restricted rotation around a single bond (a subset of axially chiral compounds)

axially chiral, but no rotational interconversion!

Atropos (Greek) - "Without Turn"

Atropisomers: stereoisomers caused by restricted rotation around a single bond (a subset of axially chiral compounds)

conformers: rotational interconversion, but barrier too low to produce stable stereoisomers!

Eliel, E. L.; Wilen, S.; Mander, L. N. Stereochemistry of Organic Compounds; Wiley Interscience: New York, 1994, pp. 1119.

Atropos (Greek) - "Without Turn"

Atropisomers: stereoisomers caused by restricted rotation around a single bond (a subset of axially chiral compounds)

First reported atropisomeric compound (1922)

Initial Discoveries via Alkaloid Resolution

Christie, G. H.; Kenner, J. J. Chem. Soc., Trans. 1922, 121, 614.

Initial Discoveries via Alkaloid Resolution

structural hypotheses

non-planar

common axis, but not coplanar chiral resolution possible

Christie, G. H.; Kenner, J. J. Chem. Soc., Trans. 1922, 121, 614.

Christie, G. H.; Kenner, J. J. Chem. Soc., Trans. 1922, 121, 614.

Figure 3. Plot of ΔG_{340}^* against the van der Waals radius¹ of X in some 6-(2-X-phenyl)-1,1,5-trimethylindans (1, Y = Me).

most commonly encountered scenario: biaryls containing at least two bulky

ortho substituents, steric hindrance between substituents restricts rotation

Figure 3. Plot of ΔG_{340}^* against the van der Waals radius¹ of X in some 6-(2-X-phenyl)-1,1,5-trimethylindans (1, Y = Me).

comparable to Charton values

However, many other factors contribute to the rotational barrier!

Bott, G; Field, L. D.; Sternhell, S. J. Am. Chem. Soc. 1980, 102, 5618.

Buttressing Effects

 $H - \Delta G^{\ddagger} = 23.4 \text{ kcal/mol}$ $I - \Delta G^{\ddagger} = 30.1 \text{ kcal/mol}$

meta substitution prevents in-plane bending that could reduce ortho-ortho steric clash

Electronic Effects

Wolf, C.; Hochmuth, D. H.; König, W. A.; Roussel, C. Liebigs Ann. 1996, 357.

Stereoelectronic Effects

 $\varphi = 90^{\circ}$

no coplanar repulsion

disrupted conjugation

minimized tortional energy

complete electronic delocalization

severe coplanar strain

Other Causes of Restricted Rotation

Stereoelectronic Effects

Leroux, F. ChemBioChem 2004, 5, 644.

Other Causes of Restricted Rotation

Stereoelectronic Effects

Increased ortho steric bulk eventually overrides stereoelectronic effects, ground state favors orthogonal orientation

Other Causes of Restricted Rotation

Bond Length Effects

Also must consider non-axial bond lengths:

more ground-state single bond character → longer C–S bond, more readily distorted in coplanar transition state

Kashima, C.; Katoh, A. *J. Chem. Soc., Perkin Trans.* **1980**, 1599. Roussel, C.; Adjimi, M.; Chemlal, A.; Djafri, A. *J. Org. Chem.* **1988**, *53*, 5076. Determination of Absolute Axial Chirality

Cahn-Ingold-Prelog notation (aR, aS) OR helical analogy (M - minus, P - plus)

Cahn-Ingold-Prelog: counter-clockwise = **aS** helical analogy: clockwise = **P**

Eliel, E. L.; Wilen, S.; Mander, L. N. Stereochemistry of Organic Compounds; Wiley Interscience: New York, 1994, pp. 1119.

Examples of Atropisomeric Frameworks

Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivarugu, J. Chem. Rev. 2015, 115, 11239.

Atropisomers in Nature and Organic Synthesis

Natural products

Pharmaceuticals

Colchicine Gout/anti-inflammatory

Organocatalysts

Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivarugu, J. Chem. Rev. 2015, 115, 11239.

Atropisomers Can Exhibit Potent Bioactivity

Eudysmic ratio: fold change in potency (cytotoxicity) between two enantiomers of an inhibitor

Eudysmic ratio for (–)-gossypol to (+)-gossypol: 10:1

Pellecchia, M. et al. J. Med. Chem. 2010, 53, 4166.

Atropisomeric Representation in Pharmaceuticals

Telenzepine treatment for peptic ulcers

Colchicine Gout/anti-inflammatory

Lesinurad urate transport inhibitor

(+)-isomer: 500-fold greater activity

Atropisomeric Representation in Pharmaceuticals

examples exist of FDA-approved compounds with minimal or no detectable racemization

Historically among chiral drugs, axial chirality is dramatically underrepresented

Considerations in Small Molecule Racemization

Potential racemization has overall suppressed efforts to design drugs with chiral atropisomeric axes

A Toolkit and a Renaissance

Boehringer Ingelheim and FDA (2011): collaboration to develop practical guide for atropisomerism in medicinal chemistry

Computational developments have enabled early-stage prediction of racemization rates based on structural elements

Class I Atropisomers

 $t_{1/2} < 1 \text{ min}, \Delta G^{\ddagger} < \sim 20 \text{ kcal/mol}$

Extremely rapid interconversion, cannot isolate in stereochemically enriched form

Often unaccounted for during synthetic planning!

Product of early stage reactions such as S_NAr , cross-coupling, amide coupling, etc. (chiral axis arises downstream as functionality added)

Dabrafenib oncology 2 chiral axes, no separable diastereomers

Top 200 Small Molecule Pharmaceuticals by Retail Sales in 2018 Compiled and Produced by the Njardarson Group (The University of Arizona)																			
10 20 ²⁰ 1	<u>م</u> ئي م	112	الإطلامي			n n n n n n n n n n n n n n n n n n n	Ilphara _a I	اللأوكالا	11. 2011				20 20	1	122	No.		-	
ev?ę	Stat. III	Start Start	98.00 H		29. 29. 29.	1200	. <u>च</u> र्लुः?-				1 2 2 2 2 1 1 2 2 2 2 0 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	11 224		150 CC	10%-	H-YES	S.	
1995	18.20		232 232	12.00 M	14.50		- The second s	-4-0 -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		ಮ್.			1000 C		in ش	Prri		1000 C	1 20
					123.55 X		1.25.24 I			Į	Proof	\$ }				1835	102	0.45 M	
	20 BU	of the		.o*	, A.			0500			-1 <u>5</u> 2		-x.a.G ^{ti}		1-0-P		المح في ال	ž. Šuoč	aller -
1 24	201623 201623		1200	ę.	a the second sec	1441		18.03		122	18 F	1.32-1	6.4 1	1380	1.22		- AP		ų.
1. Sec. 1	-Q.		3		12 - 22 - 22 - 22 - 23 - 23 - 23 - 23 -	55 295 II	N.S.S.	1005 H	ल् <u>य</u> ु.	22.22 22.23 22.23	3	- 246 -	1.43	الكجئا			14. 18. j		
Sec. 1	Profile	8 24		= <u>}</u> N≡0			1.3:41		202 C	1.55	40	y.	1. A. A.	193.1	123		άζ.	For I	
10,02	0 640-	50.20	diff			1848 Marine		000 CT	- - 	2	1 fg	çi. Martin		-74 -74	2014 2014 2014	Participant.		1995 1995	
5.0	Ser X		Š	1.22				070 040		932 1932			.9°	eres.	الخرجفا		3, 250	200	joré- jóré-

 estimated that ~15%
 of FDA approved drugs are Class I

 another ~10% of drugs are Class I-proatropisomeric (chiral axis readily interconverts under biological conditions)

Class I Atropisomers

 $t_{1/2} < 1 \text{ min}, \Delta G^{\ddagger} < \sim 20 \text{ kcal/mol}$

Class I compounds can exhibit heightened binding/potency from one axial orientation

Overlooked aspect in design of higher performance analogs

Foster, S. A. et al. *Cancer Cell* **2016**, *4*, 477.

Class III Atropisomers

Telenzepine treatment for peptic ulcers *Colchicine Gout/anti-inflammatory*

Lesinurad urate transport inhibitor

Indefinitely stable, can be developed and applied like point chiral drugs

Note: additional point chirality may be required to favor one diastereomer, stabilize chiral axis

Class III Atropisomers

 $t_{1/2} > 1$ year, $\Delta G^{\ddagger} > 30$ kcal/mol

 $\Delta G^{\ddagger}_{(rac)} \sim 22 \text{ kcal/mol}$ (racemizes in minutes)

Toenjes, S.; Gustafson, J. Future Med. Chem. 2018, 10, 4109.

Class II Atropisomers

 $t_{1/2}$ ~ minutes–days, ΔG^{\ddagger} ~ 20–30 kcal/mol

Most challenging class for pharmaceutical development (almost never clinically successful)

• Prior to widespread computational modeling, challenging to predict

• Difficult preparation and unconventional pharmacokinetic profiles

Class II Atropisomers

 $t_{1/2}$ ~ minutes–days, ΔG^{\ddagger} ~ 20–30 kcal/mol

Most challenging class for pharmaceutical development (almost never clinically successful)

Best strategy: redesign as either Class III (best case) or Class I

Other Challenges: Detection and Purification

Common methods:

 $|\mathbf{R}_A|$ + $|\mathbf{S}_A|$ - $|\mathbf{S}_A|$

Only useful for diastereomer equilibration rates

Kinetic resolution, non-preparative

Other Challenges: Detection and Purification

Common methods:

Chiral HPLC

Ideal for enantiotopic atropisomeric compounds

Considerable effort must be spent on screening conditions (frequently requires low-temperature operations)

May not translate to preparative or process-scale conditions

Other Challenges: Synthesis

To avoid setbacks from Class II compounds: simply increase ortho steric bulk → Class III!

Not so fast...

 $\Delta G^{\ddagger}_{(rot)} = 24.6 \text{ kcal/mol}$ observable atropisomers $\Delta G^{\ddagger}_{(rot)} = 20.1 \text{ kcal/mol}$ no detected atropisomers (Class I)
enhanced ADMET properties

Not always a simple retrosynthetic disconnection!

If bond constructed in early stage, must overhaul entire route

Other Challenges: Synthesis

To avoid setbacks from Class II compounds: simply increase ortho steric bulk → Class III!

New methods for late-stage, catalyst-controlled atroposelective synthesis are desirable

Outline

Introduction and General Considerations

- Discovery and fundamentals
- Contributions to rotational barriers
- Pharmaceutical considerations

Methods of (Catalytic) Synthesis

- Diastereoselective methods
- Dynamic kinetic resolutions and desymmetrization
- Redox-neutral cross-oupling
- Oxidative cross-oupling

Applications

• Case Study: Tryptorubin A

Common Strategies in Atropisomer Synthesis

Zilate, B.; Castgrogiovanni, A.; Sparr, C. *ACS Catal.* **2018**, *8*, 2981. Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 5384.
Organocatalytic Atroposelective Aldol Reactions

Faseke, V. C.; Sparr, C. *Angew. Chem. Int. Ed.* **2016**, *55*, 7261. Link, A.; Sparr, C. *Angew. Chem. Int. Ed.* **2014**, *53*, 5458. Common Strategies in Atropisomer Synthesis

Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed. 2005, 44, 5384.

The Bringmann Lactone Concept

Yu, C.; Huang, H.; Li, X.; Zhang, Y.; Wang, W. *J. Am. Chem. Soc.* **2016**, *138*, 6956. Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed. **2005**, *44*, 5384.

Dynamtic Kinetic Resolution via Atroposelective Bromination

Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251.

Common Strategies in Atropisomer Synthesis

Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed. 2005, 44, 5384.

Common Strategies in Atropisomer Synthesis

Zilate, B.; Castgrogiovanni, A.; Sparr, C. *ACS Catal.* **2018**, *8*, 2981. Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 5384.

Total Synthesis of (+)-korupensamine B

Common Strategies in Atropisomer Synthesis

Zilate, B.; Castgrogiovanni, A.; Sparr, C. *ACS Catal.* **2018**, *8*, 2981. Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 5384.

Common Strategies in Atropisomer Synthesis

Zilate, B.; Castgrogiovanni, A.; Sparr, C. *ACS Catal.* **2018**, *8*, 2981. Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 5384. Three years after initial Kumada-Corriu reports (1975):

Further ligand optimization was achieved over the next 14 years:

After these successes, no significant reports in redox-neutral cross-coupling over the next decade

Tamao, K.; Minato, A.; Miyake, N.; Matsuda, T.; Kiso, Y. Kumada, M. *Chem. Lett.* 1975, *4*, 133.
Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. *J. Am. Chem. Soc.* 1988, *110*, 8153.
Hayashi, T.; Hayashizaki, K.; Ito, Y. *Tetrahedron Lett.* 1989, *30*, 215.

Origins of Atroposelective Suzuki-Miyaura: Nicolau's Vancomycin Synthesis

Challenge - stereoselective synthesis of AB ring system in absence of bridging medium-sized ring

Design plan for Suzuki-Miyaura:

Inherent bias for one atropisomer?

Origins of Atroposelective Suzuki-Miyaura: Nicolau's Vancomycin Synthesis

entry	ligand	solvent	temp (°C)	time (h)	Yield (%)	Ratio (A:B)
1	PPh ₃	PhMe	90	2	80	1:1
2	BINAP	PhMe	90	12	trace	-
3	BINAP	THF	65	12	trace	-
4	(<i>S</i>)-BINAP	DMF	80	8	60	2.3:1
5	(<i>S</i>)-BINAP	PhMe:THF (1:1)	70	5	40	>95:5
6	(<i>R</i>)-BINAP	PhMe:THF (1:1)	70	5	40	<5:95

First report of catalyst-controlled stereoselective Suzuki-Miyaura biaryl coupling!

Nicolaou, K. C., et. al. Chem. Eur. J. 1999, 5, 2584.

Expansion to Intermolecular Enantioselective Protocols

Cammidge (2000):

Cammidge, A. N.; Crépy, K. V. L. *Chem. Commun.* **2000**, 1723. Yin, J. J.; Buchwald, S. L. *J. Am. Chem. Soc.* **2000**, *122*, 12051.

Application to Stereoselective Synthesis of Michellamine B (Tang, 2014)

First asymmetric synthesis after 20+ years of investigation

Xu, G.; Fu, W.; Liu, G. Senanayake, C. H.; Tang, W. J. Am. Chem. Soc. 2014, 136, 570.

Expansion to Other Organometallic Nucleophiles

Highly extensive investigation of mechanistic considerations in atroposelective redox-netural coupling

Swapping halide + silanol = identical ee, suggests stereodetermining reductive elimination (supported by DFT)

Genov, M.; Fuentes, B.; Espinet, P.; Pelaz, B. *Tetrahedron: Asymmetry* **2006**, *17*, 2593. Denmark, S. E.; Chang, W-T. T.; Houk, K. N.; Liu, P. J. Org. Chem. **2015**, *80*, 313.

Oxidative Couplings: Fundamentals of Radical Approaches

Zilate, B.; Castgrogiovanni, A.; Sparr, C. *ACS Catal.* **2018**, *8*, 2981. Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 5384.

Oxidative Couplings: Fundamentals of Radical Approaches

Brussee, J.; Jansen, A. C. A. Tetrahedron Lett. 1983, 24, 3261.

Directing Groups Enhance Efficiency of Oxidative Couplings

	yield (%)	ee (%)
CO ₂ Me	85	78
CO ₂ Et	77	73
CO ₂ Bn	77	76
CO ₂ <i>t</i> -Bu	69	58
Н	89	17
<i>i</i> -Pr	58	5
OBn	95	24

Kozlowski: Divergent Perylenequinone Syntheses

Achieving Cross-Selectivity in Oxidative Heterocouplings

Electronic differentiation required for cross-selectivity

Habaue, S.; Temma, T.; Sugiyama, Y.; Yan, P. Tetrahedron Lett. 2007, 48, 8595.

Progress in Oxidative C–H Arylation

Overall, underdeveloped strategy, requires substantial ligand development

Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753.

Ullmann-Goldberg: An Elusive Atroposelective Protocol

More established than Buchwald-Hartwig for intramolecular, substrate-controlled cases (diastereoselective)

Forcing thermal conditions have prevented intermolecular utility

Frey, J.; Malekafzali, A.; Delso, I.; Choppin, S.; Colobert, F.; Wencel-Delord, J. Angew. Chem. Int. Ed. 2020 (pre-print).

The First Atroposelective Intermolcular Ullmann-Goldberg (2020)

Requirements:

• indoline nucleophiles

• iodonium must contain ortho-amide substituent

Frey, J.; Malekafzali, A.; Delso, I.; Choppin, S.; Colobert, F.; Wencel-Delord, J. Angew. Chem. Int. Ed. 2020 (pre-print).

The First Atroposelective Intermolcular Ullmann-Goldberg (2020)

a full mechanistic investigation is still underway

Noteworthy that these Cu catalysts are exceptionally active for C–N coupling

Among strongest positive non-linear effects observed in asymmetric copper catalysis

Frey, J.; Malekafzali, A.; Delso, I.; Choppin, S.; Colobert, F.; Wencel-Delord, J. Angew. Chem. Int. Ed. 2020 (pre-print).

Organocatalytic Point-to-Axial Chirality Transfer in Oxidative Coupling

Chen, Y.-H.; Cheng, D.-J.; Zhang, J.; Wang, Y.; Liu, X.-Y.; Tan, B. *J. Am. Chem. Soc.* **2015**, *137*, 15062. Wang, J.-Z.; Zhou, J.; Xu, C.; Sun, H.; Kürti, L. s.; Xu, Q.-L. *J. Am. Chem. Soc.* **2016**, *138*, 5202.

Outline

Introduction and General Considerations

- Discovery and fundamentals
- Contributions to rotational barriers
- Pharmaceutical considerations

Methods of (Catalytic) Synthesis

- Diastereoselective methods
- Dynamic kinetic resolutions and desymmetrization
- Redox-neutral cross-oupling
- Oxidative cross-oupling

Applications

• Case Study: Tryptorubin A

Tryptorubin A peptidic indole alkaloid unknown biological activity

Reisberg, S. H.; Gao, Y.; Walker, A. S.; Helfrich, E. J. N.; Clardy, J.; Baran, P. S. Science 2020, 367, 458.

Tryptorubin A peptidic indole alkaloid unknown biological activity

Original structural disclosure: limited consideration of macrocyclic topology

Reisberg, S. H.; Gao, Y.; Walker, A. S.; Helfrich, E. J. N.; Clardy, J.; Baran, P. S. Science 2020, 367, 458.

Reisberg, S. H.; Gao, Y.; Walker, A. S.; Helfrich, E. J. N.; Clardy, J.; Baran, P. S. Science 2020, 367, 458.

Reisberg, S. H.; Gao, Y.; Walker, A. S.; Helfrich, E. J. N.; Clardy, J.; Baran, P. S. *Science* **2020**, *367*, 458.

characterization data inconsistent with reference - synthesis was atroposelective, but absolute stereochemistry wrong!

sp³ center of indoline prevents medium-sized ring torsion

Subsequent genomics suggests 6-mer peptide synthesized ribosomally, downstream conversion is atroposelective
Atropospecific Total Synthesis of Tryptorubin A

Axial chirality doesn't always resolve serendipitously!

Reisberg, S. H.; Gao, Y.; Walker, A. S.; Helfrich, E. J. N.; Clardy, J.; Baran, P. S. Science 2020, 367, 458.

Nate Dow Group Meeting Literature Talk April 13, 2020