Non-Classical Carbocations

Nate Dow

Group Meeting Literature Talk

June 30th, 2021

Outline

- Fundamentals of non-classical carbocations: bonding, reactivity and common examples
- How it all began: the 2-norbornyl cation debate
- Non-classical reactivity in action: biosynthesis and reactions of complex molecules
- Modern developments in non-classical carbocation chemistry
 - enantioselective transformations (List/Schreiner)
 - intermolecular non-classical interactions in C–H activation (Nelson)

Non-classical carbocations: the basics

non-classical carbocation: cations that receive stabilization via charge delocalization into adjacent C–H or C–C σ-bonds

Non-classical carbocations: the basics

commonly encountered forms of carbocation stabilization

Non-classical carbocations: the basics

- applies specifically to C-C and C-H σ -bond donation
- full charge delocalization across participating filled/empty orbitals;
 all atoms involved bear charge and electrophilic character

single sites of reactivity

multiple reactive sites

diborane: prototypical example of 3-center, 2-electron bonding

■ best described as 3-center, 2-electron bonding in all resonance forms

■ all participating C atoms are pentavalent AND electron-deficient

3-center, 2-electron bonding description applies to numerous cases that **appear to be** carbenium ions carbenium: trivalent C-centered cation **vs.** carbonium: pentavalent C-centered cation

case study: ethyl cation

expectation: hyperconjugation moderately stabilizes carbenium ion

3-center, 2-electron bonding description applies to numerous cases that **appear to be** carbenium ions carbenium: trivalent C-centered cation **vs.** carbonium: pentavalent C-centered cation

3-center, 2-electron bonding description applies to numerous cases that **appear to be** carbenium ions carbenium: trivalent C-centered cation **vs.** carbonium: pentavalent C-centered cation

Ausloos, P.; Rebbert, R. E.; Sieck, L. W.; Tiernan, T. O. J. Am. Chem. Soc. 1972, 94, 8939.

3-center, 2-electron bonding description applies to numerous cases that appear to be carbenium ions

isotopic scrambling consistent with hypervalence, delocalized intermediate

low barrier carbenium/carbonium interconversion

ethyl cation precursor	H⁻/D⁻ donor	% CD ₂ HCDH ₂	% CD ₃ CH ₃
CD ₃ CH ₂ I	<i>i</i> -C ₄ H ₁₀	89%	11%
CH ₃ CD ₂ I	<i>i</i> -C ₄ D ₁₀	90%	10%
CD ₃ CH ₂ Br	$c-C_5H_{10}$	90%	10%
CD ₃ CH ₂ CD ₃ (via electron-beam radiolysis)	c-C ₄ H ₈	90%	10%

3-center, 2-electron bonding description applies to numerous cases that **appear to be** carbenium ions

isotopic scrambling consistent with hypervalence, delocalized intermediate

low barrier carbenium/carbonium interconversion

greater degree of substitution: higher interconversion barrier, carbenium favored

3-center, 2-electron bonding description applies to numerous cases that **appear to be** carbenium ions

isotopic scrambling consistent with hypervalence, delocalized intermediate

low barrier carbenium/carbonium interconversion

consistent with carbonium behavior observed in rearrangements and hydride shifts

3°, thermodynamically favored

2°, carbenium less stable

3-center, 2-electron bonding description applies to numerous cases that **appear to be** carbenium ions

isotopic scrambling consistent with hypervalence, delocalized intermediate

low barrier carbenium/carbonium interconversion

consistent with carbonium behavior observed in rearrangements and hydride shifts

2°, uphill rearrangement

3°, carbenium already stable

Olah, Conroy, Lewis, Symons:

Hogeveen, H.; Gaasbeek, C. J.; Bickel, A. F. *Recl. Trav. Chim. Pays-Bas.* **1969**, *88*, 703. Olah, G. A.; Halpern, Y.; Shen, J.; Mo, Y. K. *J. Am. Chem. Soc.* **1971**, *93*, 1251.

Olah (1971):

D-incorporation only at methine of recovered isobutane, Me groups unlabeled

■ tert-butyl carbocation stable under conditions, no evidence of olefin formation

Olah (1971):

Olah, G. A.; Halpern, Y.; Shen, J.; Mo, Y. K. J. Am. Chem. Soc. 1971, 93, 1251.

Olah (1971):

superacid protonation of C–H and C–C σ-bonds showcases non-classical behavior in cations derived from "simple" alkanes

methonium

parent non-classical cation

computed C_s symmetry

rapid exchange of protons, highly delocalized

Olah, G. A.; Halpern, Y.; Shen, J.; Mo, Y. K. *J. Am. Chem. Soc.* **1971**, *93*, 1251. P. D. Bartlett. *Nonclassical lons,* W.A. Benjamin, New York, 1965.

methonium

cyclopropyl carbinyl

numerous variations have been proposed

cyclopropyl carbinyl

bicyclobutonium

/`\, +

tricyclobutonium

P. D. Bartlett. Nonclassical lons, W.A. Benjamin, New York, 1965.

Roberts, 1951:

Roberts, J. D.; Mazur, R. H. J. Am. Chem. Soc. 1951, 73, 3542.

Roberts, 1951:

Roberts, J. D.; Mazur, R. H. J. Am. Chem. Soc. 1951, 73, 3542.

Schleyer, 1966:

relative solvolysis rates in aq. acetone

Schleyer, P. v. R.; Van Dine, G. W. J. Am. Chem. Soc. 1966, 88, 2321.

methonium

cyclopropyl carbinyl

p-rich nature of cyclopropane C–C bonds leads to donation more similar to olefin π -systems

cyclopropane delocalization more effective than norbornene stabilization!

requires proper geometry for orbital overlap

Tanida, H.; Tsuji, T.; Irie, T. J. Am. Chem. Soc. 1967, 89, 1953.

Winstein, 1956:

relative solvolysis rates in HOAc

π-donation not formally "non-classical" but often included based on degree of rate enhancement

Winstein, S.; Shatavsky, M. J. Am. Chem. Soc. 1956, 78, 592.

similar case to π-donation of olefins, not formally "non-classical" but uncommon homobenzylic delocalization

optically pure SM leads to two possible product enantiomers

methonium

cyclopropyl carbinyl

7-norbornenyl

phenonium

most iconic non-classical cation: the 2-norbornyl system

Outline

- Fundamentals of non-classical carbocations: bonding, reactivity and common examples
- How it all began: the 2-norbornyl cation debate
- Non-classical reactivity in action: biosynthesis and reactions of complex molecules
- Modern developments in non-classical carbocation chemistry
 - enantioselective transformations (List/Schreiner)
 - intermolecular non-classical interactions in C–H activation (Nelson)

Wagner, turn of the 20th century:

Meerwein, 1922:

2-norbornyl rearrangements were well-established but treated as classical Wagner-Meerwein processes

Meerwein, H.; van Emster, K. Chem. Ber. 1922, 55B, 2500.

Winstein, 1949:

rates and selectivity of 2-norbornyl substitution reactions

proposal: delocalized ("bridged") carbonium intermediate;

anchimeric assistance leading to faster generation from exo-brosylate

Classical vs. non-classical: the debate begins

H. C. Brown, 1960's:

most recognized for developments in boron-mediated transformations

However, Brown was also heavily invested in showcasing the role of sterics in substitution reactions:

as \bigcirc becomes larger, more steric strain is relieved when rehybridizing from sp³ to sp²

faster solvolysis and nucleophile trapping
Classical vs. non-classical: the debate begins

H. C. Brown, 1960's:

most recognized for developments in boron-mediated transformations

Winstein's report upends classical steric arguments for carbocation reactions

cations subsequently described via non-classical delocalization

reports retracted soon after

Brown, H. C. Acc. Chem. Res. 1983, 16, 432.

Classical vs. non-classical: the debate begins

H. C. Brown, 1960's:

most recognized for developments in boron-mediated transformations

Brown enters debate to protect classical perspective as well as intellectual rigor of field

Classical rationales: sterics and thermochemistry

H. C. Brown, 1960's:

comparing exo/endo rates for acetate solvolysis:

 3° cation better described as carbenium than carbonium; similar magnitudes of k_{exo}/k_{endo} rule out dominant non-classical effect

Classical rationales: sterics and thermochemistry

H. C. Brown, 1960's:

comparing exo/endo rates for acetate solvolysis:

rationalized exo/endo ratios purely through steric effects and strain relief

Classical rationales: sterics and thermochemistry

H. C. Brown, 1960's:

comparing exo/endo rates for acetate solvolysis:

Brown, H. C.; Chloupek, F. J.; Rei, M.-H. J. Am. Chem. Soc. 1964, 86, 1248.

The 2-norbornyl cation: common ground and key energetic differences

H. C. Brown, 1960's:

comparing exo/endo rates for acetate solvolysis:

beyond relative rate data, Winstein's "enantiopure to racemic" experiment indicates cation must be migrating

How would Brown interpret this result?

The 2-norbornyl cation: common ground and key energetic differences

Brown: non-classical cation is transition state between rapidly equilibrating classical intermediates

Winstein: non-classical cation is intermediate and local energetic minimum

Brown, H. C. Acc. Chem. Res. 1983, 16, 432.

Olah, 1960's–1980's:

first expert in obtaining/characterizing stable carbocations

Sb-based superacids (e.g. "magic acid" - FSO_3H •SbF₅) can reach pKa ~ –28 (10¹⁶ times more acidic than anhydrous H₂SO₄)

originally designed to prevent elimination of carbocations to olefins

Olah embraced early NMR techniques for probing reactive intermediates

Olah, G. A.; Baker, E. B.; Evans, J. C.; Tolgyesi, W. S.; McIntyre, J. S.; Bastien, I. J. J. Am. Chem. Soc. 1964, 86, 1360.

Olah, 1960's–1980's: Saunders, Schleyer

convergence to singlet in ¹H NMR

rapid Wagner-Meerwein and hydride shifts

Olah, 1960's–1980's: Saunders, Schleyer

Olah, 1960's–1980's:

X-ray photoelectron spectroscopy: photo-emitted electrons can be trapped by cations as core electrons

highly localized charge leads to large increases (3–5 eV) in electron binding energy (ΔE_b) relative to standard tetravalent carbon

 $\Delta E_b = 3.9 \ eV$

Olah, G. A.; Mateescu, G. D.; Wilson, L. A.; Gross, M. H. J. Am. Chem. Soc. 1970, 92, 7231.

Olah, G. A.; Mateescu, G. D.; Reimenschneider, J. L. J. Am. Chem. Soc. 1972, 94, 2529.

Olah, 1960's–1980's:

Olah, G. A.; Mateescu, G. D.; Wilson, L. A.; Gross, M. H. *J. Am. Chem. Soc.* **1970**, *92*, 7231. Olah, G. A.; Mateescu, G. D.; Reimenschneider, J. L. *J. Am. Chem. Soc.* **1972**, *94*, 2529.

Olah, 1960's–1980's:

Saunders, Schleyer

verification that delocalized 2-norbornyl cation can be long-lived and stable, suggests intermediacy

even at 5 K, ¹³C NMR shows deshielding across multiple C atoms in 2-norbornyl cation

for classical ions related by Wagner-Meerwein shifts:

calculated Wagner-Meerwein barrier to observe process at 5 K < 0.2 kcal/mol - **unreasonable!**

Yannoni, C. S.; Macho, V.; Myhre, P. C. J. Am. Chem. Soc. 1982, 104, 7380.

Unambiguous proof from a crystal structure

although numerous derivatives were crystallized over decades, the 2-norbornyl structure was only solved in 2013

stable below 213 K, but solid state too disordered above 86 K for XRD (undesired rotations and 6,1,2-hydride shifts)

BUT

rapid cooling initiates phase transition, lattice change, cracks crystal

~10 careful annealing/cooling cycles, helium-cooled diffractometer required (final temp <50 K)

Karsten Meyer: "The crystallography was a tour de force... the procedure is insane – it put us through torture"

Unambiguous proof from a crystal structure

although numerous derivatives were crystallized over decades, the 2-norbornyl structure was only solved in 2013

highly symmetric, with two C–C bond orders <1 and one C–C bond with double-bond character

unambiguous confirmation of the non-classical nature of the 2-norbornyl cation

Looking back: who came out on top?

winners: Winstein, Olah, Schleyer, Saunders, Roberts, etc.

losers: primarily Brown

although these debates resulted in numerous experimental advances, the discourse was notoriously hostile

Olah, 1983 (Acc. Chem. Res.):

"It was hoped that [the non-classical evidence] would put an end to the prolonged 'nonclassical ion controversy'. The controversy, however, was kept alive by Brown... any further continuation of the classical-nonclassical ion controversy seems to be a futile exercise of semantics and not of relevant experimental facts."

Looking back: who came out on top?

winners: Winstein, Olah, Schleyer, Saunders, Roberts, etc.

losers: primarily Brown

although these debates resulted in numerous experimental advances, the discourse was notoriously hostile

Brown, 1983 (Acc. Chem. Res., same issue):

"Invariably, the arguments and evidence [for non-classical behavior] have crumpled after careful study...[the 2-norbornyl cation] clearly does not have the non-classical stabilization energy that has been postulated for so long... it ill befits serious scientific workers in this area to ignore [our] data and results."

Brown, H. C. Acc. Chem. Res. 1983, 16, 432.

Looking back: who came out on top?

winners: Winstein, Olah, Schleyer, Saunders, Roberts, etc.

losers: primarily Brown

John D. Roberts, who coined the term "non-classical ion"

when asked at age 95 whether the 2013 crystal structure would have caused Brown to reconsider his position:

"Herb would be Herb no matter what happened."

Outline

Fundamentals of non-classical carbocations: bonding, reactivity and common examples

- How it all began: the 2-norbornyl cation debate
- Non-classical reactivity in action: biosynthesis and reactions of complex molecules
- Modern developments in non-classical carbocation chemistry
 - enantioselective transformations (List/Schreiner)
 - intermolecular non-classical interactions in C–H activation (Nelson)

Non-classical biosynthetic pathways

Non-classical biosynthetic pathways

computational modeling identified competent non-classical transition states/intermediates that lead to additional products

Non-classical biosynthetic pathways

computational modeling identified competent non-classical transition states/intermediates that lead to additional products

Non-classical approaches in total synthesis

Uncommon rearrangements on complex substrates

macrolide ring contractions via deoxygenative fluorination

cyclopropyl carbinyl-type cation

Outline

- Fundamentals of non-classical carbocations: bonding, reactivity and common examples
- How it all began: the 2-norbornyl cation debate
- Non-classical reactivity in action: biosynthesis and reactions of complex molecules
- Modern developments in non-classical carbocation chemistry
 - enantioselective transformations (List/Schreiner)
 - intermolecular non-classical interactions in C–H activation (Nelson)

List and Schreiner, 2020:

Me Me

numerous modern methods for enantiocontrol

H-bond donor catalysis (i.e. squaramides)

host-guest catalysis (supramolecular)

Brønsted acid catalysis

+ / [

no known strategies for enantioinduction

with *o*-delocalized cations

List and Schreiner, 2020:

Me Me

numerous modern methods for enantiocontrol

H-bond donor catalysis (i.e. squaramides)

host-guest catalysis (supramolecular)

Brønsted acid catalysis

strategy: entrap intermediate in chiral ion pair "binding pocket"

"The reverse Winstein"

"The reverse Winstein"

using racemic substrate, same conditions: 86% yield, 97:3 er

imidodiphosphorimidate catalyst

catalyst and leaving group optimization critical

other Brønsted acids produced conjugate bases capable of adding directly to 2-norbornyl cation

Propoerzi, R.; Kaib, P. S. J.; Leutzsch, M. et al. Nat. Chem. 2020, 12, 1174.

Si⁺ fluoride abstraction: 89% yield, 92:8 er

rapid Wagner-Meerwein and hydride shifts

similar scrambling consistent with non-classical intermediate

DFT suggestive of anionic stabilization of three electrophilic positions in non-classical cation

Propoerzi, R.; Kaib, P. S. J.; Leutzsch, M. et al. Nat. Chem. 2020, 12, 1174.

Outline

- Fundamentals of non-classical carbocations: bonding, reactivity and common examples
- How it all began: the 2-norbornyl cation debate
- Non-classical reactivity in action: biosynthesis and reactions of complex molecules
- Modern developments in non-classical carbocation chemistry
 - enantioselective transformations (List/Schreiner)
 - intermolecular non-classical interactions in C–H activation (Nelson)

C–H insertion by aryl cations

C–H insertion by aryl cations

C–H insertion by aryl cations

notable observations

C–H insertion by aryl cations

C–H insertion by aryl cations

non-rate-limiting C-H insertion?

Nelson, 2018:

unexpected finding that reaction depends on non-classical intermediates and favors geminal (1,1) insertion

hydride shifts still possible prior to reduction, resulting in scrambling of (1,1) arrangement

Nelson, 2018:

(1,1) intermediate

Nelson, 2018:

Popov, S.; Shao, B.; Bagdasarian, A. L.; Benton, T. R.; Zuo, L.; Yang, Z.; Houk, K. N.; Nelson, H. M. Science 2018, 361, 381.

intermediate must be highly stabilized (i.e. non-classical) if formation of benzylic cation is slow

Nelson, 2018:

trends hold for additional cases (i.e. intramolecular, transannular)

transannular C–H insertion

non-classical 2° to 3° transition

Wigman, B. et al. J. Am. Chem. Soc. 2019, 141, 9140.

new intermolecular reactivity can be obtained via non-classical interactions of "naked" carbocations