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1 

The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling 2 
the selective combination of any primary radical with any secondary or tertiary radical via a radical sorting mechanism1–8. 3 
Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals—such as alcohols, acids, and halides—in various 4 
permutations for the construction of a single C(sp3)–C(sp3) bond. The ability to sort these two distinct radicals across 5 
commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)–C(sp3) 6 
bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ 7 
formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically 8 
leading to statistical radical recombination, hydrogen atom transfer, disproportionation, and other deleterious pathways12,13. 9 
Herein, we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic 10 
radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then 11 
differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work 12 
accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene 13 
dialkylation. 14 

A key goal of organic chemistry is the development of new methods for the rapid synthesis of C(sp3)–C(sp3) bonds en route to three-15 
dimensional drug-like molecules.14-16. Traditional cross-coupling paradigms rely on oxidative addition, transmetallation, and reductive 16 
elimination mechanistic steps that limit the pool of potential coupling partners. By contrast, bimolecular homolytic substitution (SH2) 17 
catalysis couples primary radicals with secondary or tertiary radicals through a radical sorting mechanism based on carbon–metal bond 18 
strength1-8,17. As this unique radical sorting mechanism is functional group-agnostic, abundant radical precursors, such as alcohols, acids, 19 
and halides, can be coupled in any desired combination to generate complex products from simple feedstock chemicals1-8 (Fig 1a). This 20 
novel approach greatly expands access to C(sp3)-rich chemical space and enables formation of otherwise elusive all-C(sp3) quaternary 21 
centers18. Although radical-sorting SH2 catalysis has been shown to construct a single C(sp3) bond from a variety of radical precursors, 22 
the more challenging three-component radical sorting mechanism has yet to be demonstrated.  23 

A one-step protocol for the regioselective dialkylation of unactivated alkenes is highly desirable11. Alkenes are widely available, and 24 
the simultaneous construction of two C(sp3)–C(sp3) bonds across an alkene would greatly accelerate access to therapeutically 25 
advantageous C(sp3)-rich small molecules14. Due to the propensity of alkyl-metal complexes to undergo β–H elimination19-21, existing 26 
methods for alkene dialkylation remain greatly limited, relying either on auxiliary functional groups to direct dialkylation22-24 or the 27 
presence of specific ground-state radical traps25. A general method in which two distinct radicals are formed and regioselectively added 28 
across any unactivated alkene represents an ideal approach.  29 

We envisioned a catalytic alkene dialkylation platform commencing with addition of an electrophilic alkyl radical—such as 30 
trifluoromethyl or difluoroacyl radical—into an alkene. Subsequent radical–radical recombination of the resultant radical species with 31 
a nucleophilic alkyl radical would yield the dialkyl adduct in a single transformation (Fig. 1b). The proposed dialkylation would be 32 
expected to proceed with good regioselectivity and enable installation of electron-poor alkyl groups that are typically not compatible 33 
with nickel catalysis26. Through the course of the reaction, three distinct radicals would be formed and must be efficiently sorted. 34 
Unsurprisingly, the envisioned transformation does not proceed in the absence of any sorting catalysts; instead, deleterious pathways, 35 
including disproportionation, alkyl-alkyl dimerization, and hydrogen atom transfer (HAT) predominate 12,13. We postulated that an 36 
appropriate SH2 catalyst, which has been shown to facilitate outer-sphere C(sp3)–C(sp3) bond formation, might be used to sort these 37 
three simultaneously generated radicals toward productive alkene dialkylation. For the hypothesized radical sorting to be operative, the 38 
catalyst used must be capable of preferentially binding primary alkyl radicals over high-energy electrophilic alkyl radicals and secondary 39 
or tertiary radicals, while still being capable of performing outer-sphere bimolecular homolytic substitution for C(sp3)–C(sp3) bond 40 
formation. Herein, we disclose a general strategy for the dialkylation of alkenes through the simultaneous generation of electrophilic 41 
alkyl radicals and primary nucleophilic radicals in the presence of unactivated alkenes (Fig. 1c). The functional group-agnostic nature 42 
of SH2 catalysis permits the use of commercially available primary alcohols and electron-poor alkyl chlorides as radical precursors, 43 
giving potential access to 2×1015 C(sp3)-rich dialkylated products27. 44 
 45 
Mechanism 46 

We envisioned that the alkene dialkylation would proceed via the mechanism outlined in Figure 2. Condensation of primary alcohol 47 
1 onto a benzoxazolium salt (NHC) forms adduct 2 in situ28. Meanwhile, blue light excitation of photocatalyst 3 accesses a long-lived, 48 
triplet excited state 4 (E1/2

red [*IrIII/IrII]=+1.21 vs. saturated calomel electrode (SCE) in MeCN)29. Stern-Volmer analysis (See SI pages 49 
S32–S33) suggests that 4 undergoes reductive quenching with 2. Subsequent deprotonation and facile β-scission, provides the desired 50 
primary alkyl radical (6) and a benign aromatized byproduct. The primary alkyl radical can then be captured by high valent nickel SH2 51 
catalyst 7, producing nickel–alkyl complex 85. To close the photocatalytic cycle, reduced-state IrII (9) is capable of52 

53 
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reducing an ⍺-acyl alkyl chloride 10 (or dMesSCF3(OTf)) to produce an electrophilic carbon-centered radical (11) that can add into an 55 
unactivated alkene (12). Radical probes (See SI pages S28–S31) support the formation of tertiary radical (13) which is capable of being 56 
further functionalized30-32. This nucleophilic tertiary radical can undergo a SH2 reaction with 8, thereby regenerating 7 and forming the 57 
desired dialkylated product (14) (see SI for select mechanistic experiments). Key to the success of this reaction is the radical sorting of 58 
the many transient radicals, both electronically, through addition to the alkene, and sterically, through binding to a high valent nickel 59 
complex. We envisioned that this novel mechanistic paradigm might provide a general, modular strategy for the dialkylation of 60 
unactivated olefins. 61 
 62 
Alkene scope 63 

We first sought to interrogate the scope of the alkene coupling partner (Fig 3). We selected trifluoromethyl and difluoroacetamide 64 
radicals as the electrophilic alkyl radical partners, as both groups are important in drug discovery33, 34. For the primary radical partner, 65 
we opted to use the methyl radical, both for its ability to favorably influence the properties of drugs (termed the magic methyl effect) 66 
and due to the challenge often posed by its incorporation into complex molecules35. Gratifyingly, the coupling reaction proceeded 67 
efficiently across a wide range of alkenes. Unactivated terminal alkenes with relatively low π-nucleophilicity36 were dialkylated in good 68 
yields, tolerating protic functionality (15, 16) as well as homolytically labile allyl–benzylic C–H bonds (17, 18). The coordinatively 69 
saturated SH2 catalyst is incapable of oxidative addition; as such, aryl and alkyl halide-containing vinyl ethers and enamides were 70 
dialkylated in good yield (19–21). The generation of quaternary centers, a longstanding challenge in organic synthesis, can be achieved 71 
from 4, 5, 6, and 7-member rings as well as from acyclic 1,1-disubstituted alkenes (22–27). Notably, tertiary boronic esters (28), ethers 72 
(29), and ureas (30) were effectively formed under our reaction conditions. Moreover, a range of 1,2-disubstituted and trisubstituted 73 
alkenes were competent substrates (31–34). As a demonstration of the mild and robust nature of the reaction conditions, we successfully 74 
dialkylated several complex bioactive molecules. Specifically, efinconazole (35), paroxetine derivative (36), vinclozolin (37), 75 
retapamulin (38), quinine (39), and ataluren derivative (40) were dialkylated in good yields, showcasing the ability of the reaction to 76 
tolerate tertiary amines, alcohols, sulfides, quinuclidine, and oxidative addition-prone oxadiazole functionality. These results suggest 77 
that the protocol should be applicable to the late-stage dialkylation of alkenes.  78 
 79 
Alkyl chloride scope 80 

We next turned our attention to exploring the scope of the electrophilic radical partner (Fig 4). Alkyl chlorides were selected as radical 81 
precursors for their ease of synthesis, commercial availability, and enhanced stability over their bromide counterparts. We found that ⍺-82 
acyl radicals spanning a range of electrophilicity profiles, from ⍺-ester to ⍺-difluoroester radicals (41–43), reacted in good yields. Both 83 
acetamide (44), a ubiquitous moiety in drugs, and substituted difluoroacetamides (45), which are particularly important in fragment-84 
based drug discovery, could be incorporated through the dialkylation protocol. Synthetically useful Horner-Wadsworth-Emmons 85 
reagents (46) and ⍺-acyl chlorides (47) were prepared in good yields and offer the potential for further elaboration. In addition to ⍺-acyl 86 
radicals, we found numerous other electrophilic carbon-centered radicals to be viable electrophilic radical partners, including ⍺-87 
difluorosulfonyl (48), difluorobenzyl (49), and ⍺-nitrile (50) radicals. 88 
 89 
Primary alcohol scope 90 

Finally, we explored the scope of the primary alcohol coupling partner. As shown in Figure 4, a broad scope of pharmaceutically 91 
relevant alkyl fragments were incorporated through our protocol. Coupling with commercially available 13C methanol served to install 92 
an isotopically labelled methyl group at the quaternary center (51). Moreover, a range of alcohols were found to be effective alkyl 93 
coupling partners, including ether alcohol (52), threonine (53), serine (54), guaifenesin (55), and other diols (56, 57). Reaction of diol 94 
substrates proceeds with full regioselectivity for the primary alcohol. These complex, coupled products (53-57) bear a free hydroxyl 95 
group that can be subjected to further elaboration via NHC activation. Moreover, 1,1-disubstituted alkenes in 4-membered rings (58) or 96 
acyclic substrates (59) were observed to undergo efficient alkylation with Cbz-glycinol. Notably, 1,2-disubstituted alkenes (60) were 97 
also readily dialkylated, providing an orthogonally protected morpholine scaffold. The complexity-building potential of this protocol 98 
was demonstrated through elaboration of dialkylated products into complex C(sp3) rich frameworks (61, 63). The tertiary alcohol of 61 99 
was activated by NHC, and subsequent benzylation8 proceeded efficiently to generate a second quaternary center (62). In the case of 63, 100 
the tertiary alcohol served as a radical precursor en route to alkylation with dehydroalanine37 to yield complex scaffold, 64. 101 
 102 
Conclusion 103 

Key to the strategy described herein is an outer-sphere C(sp3)–C(sp3) bond formation capable of forming quaternary centers. A wide 104 
range of unactivated alkenes were dialkylated, including tertiary amines, alcohols, aryl halides, and other reactive functionalities. Several 105 
examples of both the electrophilic radical and primary radical partners containing sites for further elaboration were demonstrated in 106 
good yield. Modulation of all three reaction components should allow for the rapid synthesis of C(sp3)-rich small molecule libraries. 107 
Furthermore, the described approach provides a framework for future developments in C(sp3)–C(sp3) bond-forming alkene 108 
difunctionalization. 109 
 110 

111 
 112 
 113 
 114 
 115 
 116 
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191 
 192 
 193 
Figure 1 Radical sorting-enabled alkene dialkylation. a, Bimolecular homolytic substitution (SH2) radical sorting enables the use of any functional group in any 194 
combination for C(sp3)–C(sp3) bond formation. b, Three-component radical sorting enables alkene dialkylation. c, This work: alkene dialkylation of unactivated alkenes 195 
using primary alcohols and ⍺-acyl chlorides as radical precursors. Boc, tert-butylcarbonyl; Me, methyl; Cbz, carbobenzyloxy; Ph, phenyl; Bn, Benzyl; NHC, N-196 
heterocyclic carbene; Ni, nickel; PC, photocatalyst; Ar, aryl. 197 
 198 
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Figure 2 Proposed mechanism of alkene dialkylation Alk, Alkyl; t-Bu, tert-butyl; EWG, electron withdrawing group; dMesCF3(OTf), 199 
Dimesityl(trifluoromethyl)sulfonium trifluoromethanesulfonate; L, ligand. 200 
 201 
Figure 3 Alkene scope aMeOH (2 equiv.), NHC-1 (2.1 equiv.), Pyridine (2.1 equiv.), Ni(acac)2 (15 mol%), KTp* (15 mol%), (Ir[dF(CF3)ppy]2(dtbbpy))PF6 (1 mol%), 202 
dMesSCF3(OTf) (2 equiv.), alkene (0.50 mmol), CsOAc (2.5 equiv.), TBME/tAmOH (1:1, 0.05 M), IPR(2% light intensity, 12 h). bMeOH (2 equiv.), NHC-1 (2.1 equiv.), 203 
Pyridine (2.1 equiv.), Ni(acac)2 (25 mol%), 4CzPN (1 mol%), difluorochloroacetamide (2 equiv.), alkene (0.50 mmol), CsOAc (2.5 equiv.), TBME/MeCN (1:1, 0.05 M), 204 
IPR (50% light intensity, 12 h). Isolated yields. Ir, iridium; Ni(acac)(Tp*), Nickel(acetylacetone)tris(3,5-dimetyl-1-pyrazolyl)borate; Ir-1, Ir(dFCF3ppy)2(dtbbpy)PF6; 205 
TBS, tert-butyldimethylsilyl; Ln, ligand; Ni(acac)2, nickel(II) bis(acetylacetone); KTp*, potassium tris(3,5-dimetyl-1-pyrazolyl)borate; 4CzPN, 3,4,5,6-tetra(9H-206 
carbazol-9-yl)phthalonitrile; IPR, integrated photoreactor. 207 
 208 
Figure 4 Scope of electrophilic and nucleophilic radicals aMeOH (2.0 equiv.), NHC-1 (2.1 equiv.), Pyridine (2.1 equiv.), Ni(acac)2 (25 mol%), 4CzPN (1 mol%), alkyl 209 
chloride (2 equiv.), alkene (0.50 mmol), CsOAc (2.5 equiv.), TBME/MeCN (1:1, 0.05 M). bprimary alcohol (2.5 equiv.), NHC-pCF3 (2.6 equiv.), Pyridine (2.6 equiv.), 210 
Ni(TMHD)2 (25 mol%), 4CzPN (1 mol%), alkyl chloride (2.5 equiv.), alkene (0.50 mmol), CsOAc (3.0 equiv.), TBACl (0.6 equiv.) TBME/tAmOH (1:1, 0.05 M), IPR 211 
(5% intensity, 16 h). cSee supplementary information for experimental details. dYield determined by 19F NMR analysis with 1,4-difluorobenzene as an internal standard. 212 
eUtilizing 3-(trifluoromethyl)benzyl bromide as a cross-coupling partner; see supplementary information for experimental details. fUtilizing methyl 2-213 
(((benzyloxy)carbonyl)amino)acrylate as a cross-coupling partner; see supplementary information for experimental details. All yields are isolated unless otherwise noted. 214 
Et, ethyl, Ni(TMHD)2, nickel(II) bis(2,2,6,6-tetramethyl-3,5-heptanedionate). 215 
 216 
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