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the transition to the expanded phase, lowering the overall amount of 
heat released compared to adsorption in the absence of a phase tran-
sition. Similarly, the transition to the collapsed phase is exothermic, 
and some of the heat released by the framework as it collapses should 
offset the endothermic desorption of CH4.

In classical porous materials, low-coverage differential CH4 adsorp-
tion enthalpies are generally −12 kJ mol−1 CH4 to −15 kJ mol−1 CH4 for 
adsorbents that do not have any strong CH4 binding sites and are closer 
to −15 kJ mol−1 to −25 kJ mol−1 for adsorbents with the highest volu-
metric CH4 capacities7,8. For the steepest region of the CH4 adsorption 
isotherm of Co(bdp), the differential enthalpy is considerably lower, at 
just −8.4(3) kJ mol−1 (where the uncertainty corresponds to ±1 stand-
ard deviation), because the endothermic framework expansion partially 
offsets the exothermic heat of adsorption (Fig. 3c). After the transition 
to the expanded Co(bdp) phase is complete, the differential enthalpy 
approaches −13 kJ mol−1, which is consistent with weak CH4 physical 
adsorption in the absence of a phase transition to mitigate heat. To 
confirm the accuracy of the calculated differential enthalpies, the heat 
released during CH4 adsorption was directly measured by performing  
variable-pressure microcalorimetry experiments. As shown in Fig. 3c, 
the differential enthalpies obtained from calorimetry are in excellent 
agreement with those calculated from the  variable-temperature adsorp-
tion isotherms.

The total amount of heat released when increasing the pressure of 
CH4 adsorbed in Co(bdp) from 5.8 bar to 35 bar, as would occur during 
refuelling of an ANG vehicle, is calculated by integrating the differential- 
enthalpy curve with respect to the amount of CH4 adsorbed. The 73.4 kJ 
of heat released per litre of Co(bdp) represents a 33% reduction rela-
tive to the 109 kJ l−1 of heat released by HKUST-1 under the same 
conditions, even though the amount of CH4 adsorbed in Co(bdp) 

is 8% greater. We further calculate that 93.9 kJ l−1 of heat would be 
released for hypothetical CH4 adsorption in a rigid Co(bdp) frame-
work—28% higher than when adsorption occurs with a phase transi-
tion to provide heat mitigation25.

By chemically modifying Co(bdp), we hypothesized that it might  
be possible to obtain a new flexible framework with a similar 
stepped CH4 isotherm, but a higher-energy phase transition that 
could provide even greater intrinsic heat management. Because one- 
dimensional chains are known to form with tetrahedral Fe2+ ions bridged 
by μ 2-pyrazolates26, we anticipated that it might be possible to synthe-
size an isostructural iron analogue of Co(bdp). By heating FeCl2 and 
H2bdp in a mixture of N,N-dimethylformamide (DMF) and methanol, 
we indeed obtained Fe(bdp) as yellow, block-shaped crystals. X-ray anal-
ysis of a DMF-solvated crystal (Extended Data Fig. 6) confirmed that 
Fe(bdp) is isostructural to Co(bdp). Fe(bdp) has a stepped high-pressure 
CH4 isotherm at 25 °C (Fig. 1d), suggesting that this new compound 
also undergoes a reversible phase transition between a collapsed and 
expanded framework. Although the total CH4 uptake is comparable to 
that of Co(bdp), the adsorption and desorption steps occur at the con-
siderably higher pressures of 24 bar and 10 bar, respectively, suggesting 
that replacing Co with Fe increases the energy of the phase transition.

In situ powder X-ray diffraction experiments from 0 bar to 50 bar 
of CH4 (Fig. 2b) and subsequent Rietveld refinements afforded the 
collapsed and CH4-expanded crystal structures of Fe(bdp). Although 
the collapsed phase is nearly identical to that of Co(bdp), with edge-
to-face π –π  interactions and no accessible porosity, the volume of the 
expanded Fe(bdp) phase at 40 bar is 9% greater than that of Co(bdp) 
(Fig. 2f). In contrast to Co(bdp), we observe a second transition for 
Fe(bdp) at pressures above 40 bar, wherein Fe(bdp) slightly expands to a 
framework with nearly perfect square channels (Extended Data Fig. 6). 
In spite of its greater expansion and lower crystallographic density, the 
usable CH4 capacity of Fe(bdp) is still higher than all known adsorbents 
at 150 v/v and 190 v/v for 35 bar and 65 bar adsorption, respectively.

Although Fe(bdp) and Co(bdp) have similar usable capacities, the 
initial Fe(bdp) phase transition offsets more heat, and only 64.3 kJ of 
heat is released per litre of adsorbent during CH4 adsorption at 35 bar, 
which is 12% lower than for Co(bdp) and 41% lower than for HKUST-1.  
This is a direct consequence of the larger increase in the enthalpy of 
Fe(bdp) (8.1 kJ mol−1) than of Co(bdp) (7.0 kJ mol−1) during the phase 
transition, which mitigates more heat of adsorption, thereby provid-
ing a greater source of intrinsic thermal management. This result 
demonstrates how a slight variation in the metal–organic framework 
can be used to improve its intrinsic thermal management, and it is 
very likely that similar effects will prove possible through alteration of  
the bdp2− bridging ligand.

Examining the temperature dependence of the CH4 isotherms of 
Co(bdp) and Fe(bdp) (Extended Data Figs 2, 3) reveals another advan-
tage of these materials, involving a reduction in the effect of cooling 
during desorption. Consistent with other gate-opening metal–organic 
frameworks, the CH4 adsorption and desorption steps in Co(bdp) 
and Fe(bdp) shift to lower pressures at lower temperatures (Fig. 3a, b). 
As long as the temperature stays above 0 °C in Co(bdp) or −25 °C in 
Fe(bdp), however, the transition to the collapsed phase occurs above 
5.8 bar, and the usable CH4 capacity will not be affected by cooling 
(Supplementary Tables 2, 3). This property has practical benefits for 
driving in cold-weather climates and should further reduce the overall 
thermal management required in an ANG system.

Recent work27−29 has shown that it is possible to induce a phase 
transition in flexible metal–organic frameworks by applying external 
mechanical pressure. With this in mind, we proposed that applying 
moderate mechanical pressure could provide a means of further tun-
ing the CH4 adsorption and desorption step pressures in Co(bdp) and 
Fe(bdp) and of increasing the energy of the phase transition to offset 
more heat. To investigate this concept, high-pressure CH4 adsorption 
isotherms were measured for Co(bdp) at different levels of applied uni-
axial mechanical pressure.

Figure 4 | Effect of mechanical pressure on CH4 storage in Co(bdp).  
a, Space-filling models of collapsed (left) and CH4-expanded (right) 
Co(bdp); purple, grey, blue, and white spheres represent Co, C, N, and H 
atoms, respectively. b, Excess CH4 adsorption isotherms for Co(bdp) at 
25 °C with different levels of applied external mechanical pressure, indicated 
by the inset, colour-coded bulk powder densities, with higher densities 
corresponding to greater applied mechanical pressure. The maximum 
CH4 pressure for which hysteresis is still present is indicated for each bulk 
density by the appropriately coloured dashed line. Filled circles represent 
adsorption; open circles represent desorption.
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NMR spectroscopy

Confirm the absence of organic linkers, modulators and solvent molecules

NU-1000

Solvothermal synthesis process — characterization

Before purification

After purification
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Solvothermal synthesis process

Streamline of organic synthesis

Reaction setup Purification Structure analysis 

Metal ion precursors

Organic linkers

Solvents and heat

Solvent wash

Aqueous wash

Dry

Crystal structures

Properties

Purity check
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Up to 93% yield, 90% ee 
>30 examples
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 Jiang, JACS, 2019

DPZ (0.5 mol%) 
LA (20 mol%) 

Hantzsch ester (1.5 equiv)

35 mg MS

CHCl3/C6F5H = 4:1


-50 °C, 3 W Blue light, 60 hr

Photocatalyst: DPZ Ar  = 2,4,6-iPr3C6H2

Two key components: PC + Lewis acid



Enhanced reactivity — MOF with dual active sites enabled cross coupling 

Construction of MOF: Lewis acid (Al) + Ir

Quan, Y.; Song, Y.; Shi, W.; Xu, Z.; Chen, J. S.; Jiang, X.; Wang, C.; Lin, W. J Am Chem Soc 2020, 142 (19), 8602-8607.
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Organic synthetic applications of MOFs

What are possible organic synthetic applications of MOFs?

Case study 1: Enhanced reactivity 

Case study 2: Novel reagents based on MOFs
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Which metal ion should be employed?
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-𝚫H = 37.7 kJ/mol (experimental value)
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storage cap = 7.95 mmol/g, 34 wt%

Under air: stable for one week at rt 

stable at 120 °C for 24 hr
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Conclusions
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Organic synthetic applications MOFs

“addressing currently unmet needs in catalysis 
instead of trying to outcompete homogeneous 

catalysts in areas where they excel”
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