Basics of MOFs and Related Organic Synthetic Applications

Anna (Qinyan) Cai

MacMillan Research Group

Literature Talk

April 11th, 2025

what are mofs

All Images Videos Forums Shortvideos Shopping Web More -

MOF - 1001

MOF - 101-2

Timeline

JACS 1995, 117, 10401–10402.

Timeline

JACS **1995**, *117*, 10401–10402.

Timeline

Nature 1999, 402, 276–279.

Gas storage

Photoluminscence

Sensing

Magnetism

Catalysis

Diverse applications related to MOFs

Optoelectronics

Drug delivery

Bio imaging

Conductivity

Energy storage

Catalysis

Diverse applications related to MOFs

Outline

What are MOFs?

How to synthesize MOFs?

Organic synthetic applications MOFs

Outline

What are MOFs?

How to synthesize MOFs?

Organic synthetic applications MOFs

MOF: Metal-organic framework

MOF: Metal-organic framework

MOF: Metal-organic framework

MOF: Metal-organic framework

MOF: Metal-organic framework

MOF: Metal-organic framework

MOF: Metal-organic framework

Metal ions

Metal ions: metal clusters

Metal ions: metal clusters

MOF - 5

Metal ions: metal clusters

 $Zn_4O(CO_2)_6$

Metal ions: metal clusters

 $Zn_4O(\textbf{CO}_2)_6$

Metal ions: metal clusters

Zn₄**O**(CO₂)₆

Metal ions: metal clusters

Zn₄O(CO₂)₆

Tetrahedral

Metal ions: metal clusters

 $Zn_4O(CO_2)_6$

 $M_2(CO_2)_4$ M = Cu, Zn, Fe, Mo, Cr, Co, Ru

Metal ions: metal clusters

 $Zn_4O(CO_2)_6$

M = Cu, Zn, Fe, Mo, Cr, Co, Ru

Metal ions: metal clusters

 $Zn_4O(CO_2)_6$

 $M_{2}(CO_{2})_{4} \label{eq:M2}$ M = Cu, Zn, Fe, Mo, Cr, Co, Ru

Metal ions: metal clusters

 $Zn_4O(CO_2)_6$

$$\label{eq:m2} \begin{split} M_2(CO_2)_4\\ M = Cu,\,Zn,\,Fe,\,Mo,\,Cr,\,Co,\,Ru \end{split}$$

 $M_3O(CO_2)_6$ M = Zn, Cr, In, Ga

Cu₂(**CNS**)₄
Metal ions

Metal ions: metal clusters

 $Zn_4O(CO_2)_6$

$$\label{eq:M2} \begin{split} M_2(CO_2)_4\\ M = Cu,\,Zn,\,Fe,\,Mo,\,Cr,\,Co,\,Ru \end{split}$$

 $Ni_4(C_3H_3N_2)_8$

 $M_3O(CO_2)_6$ M = Zn, Cr, In, Ga

Cu₂(CNS)₄

 $Zr_2O_8(CO_2)_8$

Metal ions

Metal ions: metal clusters (secondary building units)

 $Zn_4O(CO_2)_6$

 $M_2(CO_2)_4$ M = Cu, Zn, Fe, Mo, Cr, Co, Ru

 $Ni_4(C_3H_3N_2)_8$

 $M_3O(CO_2)_6$ M = Zn, Cr, In, Ga

Cu₂(CNS)₄

 $Zr_2O_8(CO_2)_8$

What are MOFs?

MOF: Metal-organic framework

class of crystalline materials with ultrahigh porosity

Organic linkers: contain heteroatom

Organic linkers: contain heteroatom

BDC

Organic linkers: contain heteroatom

BDC

ATC

Organic linkers: contain heteroatom

ATC

Organic linkers: contain heteroatom

What are MOFs?

MOF: Metal-organic framework

class of crystalline materials with ultrahigh porosity

What are MOFs?

MOF: Metal-organic framework

class of crystalline materials with ultrahigh porosity

Outline

What are MOFs?

How to synthesize MOFs?

Organic synthetic applications MOFs

Reticular synthesis

Reticular synthesis

Reticular synthesis

Reticular synthesis

Reticular synthesis

Retrosynthesis: within the building blocks, bonds break and form

Reticular synthesis

Retrosynthesis: within the building blocks, bonds break and form

Supramolecular assembly: building blocks are linked by non-covalent interactions

How to synthesize MOFs with experimental procedures?

How to synthesize MOFs with experimental procedures?

How to synthesize MOFs with experimental procedures?

Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemistry of Materials 2016, 29 (1), 26-39.

Streamline of organic synthesis

Streamline of organic synthesis

Reaction setup

Streamline of organic synthesis

Reaction setup

Purification

Streamline of organic synthesis

Reaction setup

Purification

Structure analysis

Streamline of organic synthesis

Reaction setup

Purification

Structure analysis

Solvothermal synthesis

Streamline of organic synthesis

Reaction setup

Purification

Structure analysis

Solvothermal synthesis

Solvothermal synthesis

 $Zr_6O_4(OH)_4$

BPDC

UiO-67

$Zr_6O_4(OH)_4$

 $Zr_6O_4(OH)_4$

 $Zr_6O_4(OH)_4$

BPDC

4 4'-biphenyldicarboxylic acid

 $ZrCl_4$

 $ZrCl_4$

ZrCl₄

Too fast crystalline growth with relatively amorphous structures

Organic linker Two sides for crystal growth

ZrCl₄

4 4'-biphenyldicarboxylic acid

Too fast crystalline growth with relatively amorphous structures

O HO O HO O

Organic linker Two sides for crystal growth

Modulator

Nonstructural, monotopic linker

Illustrative Synthesis:

UiO-67

Using benzoic acid as modulator

Streamline of organic synthesis

Reaction setup

Purification

Structure analysis

Solvothermal synthesis

Streamline of organic synthesis

Reaction setup

Purification

Structure analysis

Solvothermal synthesis

Crystalline identification

Crystalline properties

Purity check

Crystalline identification

Crystalline properties

Purity check

Powder X-ray diffraction (PXRD)

Powder X-ray diffraction (PXRD)

determine bulk crystallinity of MOF samples by comparing with simulated structures

Powder X-ray diffraction (PXRD)

determine bulk crystallinity of MOF samples by comparing with simulated structures

Powder X-ray diffraction (PXRD)

determine bulk crystallinity of MOF samples by comparing with simulated structures

Powder X-ray diffraction (PXRD)

determine bulk crystallinity of MOF samples by comparing with simulated structures

obtain direct crystal structure of MOFs

Powder X-ray diffraction (PXRD)

determine bulk crystallinity of MOF samples by comparing with simulated structures

Single crystal X-ray diffraction

obtain direct crystal structure of MOFs

Dobdc = 2,5-dioxido1,4-benzenedicarboxylate

Crystalline identification

Crystalline properties

Purity check

Thermogravimetric analysis

Thermogravimetric analysis

determine thermal stability of the MOFs

Thermogravimetric analysis

determine thermal stability of the MOFs

Thermogravimetric analysis

Aqueous stability testing

determine thermal stability of the MOFs

Thermogravimetric analysis

determine thermal stability of the MOFs

Aqueous stability testing

determine aqueous (pH) stability of the MOFs

Aqueous stability testing

determine aqueous (pH) stability of the MOFs

$$\frac{\text{mass}_{\text{recovered}}}{\text{mass}_{\text{initial}}} \times 100 = \text{yield \%}$$

Aqueous stability testing

determine aqueous (pH) stability of the MOFs

$$\frac{\text{mass}_{\text{recovered}}}{\text{mass}_{\text{initial}}} \times 100 = \text{yield \%}$$

Nitrogen adsorption and desorption isotherms

Aqueous stability testing

determine aqueous (pH) stability of the MOFs

$$\frac{\text{mass}_{\text{recovered}}}{\text{mass}_{\text{initial}}} \times 100 = \text{yield \%}$$

Nitrogen adsorption and desorption isotherms

determine surface areas and pore volumes

Crystalline identification

Crystalline properties

Purity check

NMR spectroscopy

Confirm the absence of organic linkers, modulators and solvent molecules

NMR spectroscopy

Confirm the absence of organic linkers, modulators and solvent molecules

Solvothermal synthesis process

Streamline of organic synthesis

Reaction setup

Purification

Structure analysis

Solvothermal synthesis process

Streamline of organic synthesis

Purification

Metal ion precursors

Reaction setup

Organic linkers

Solvents and heat

Solvent wash

Aqueous wash

Dry

Structure analysis

Crystal structures

Properties

Purity check
Outline

What are MOFs?

How to synthesize MOFs?

Organic synthetic applications MOFs

Organic synthetic applications of MOFs

What are possible organic synthetic applications of MOFs?

Case study 1: Enhanced reactivity

Case study 2: Novel reagents based on MOFs

Organic synthetic applications of MOFs

What are possible organic synthetic applications of MOFs?

Case study 1: Enhanced reactivity

Case study 2: Novel reagents based on MOFs

Enzyme: multiple active sites

Enzyme: multiple active sites

MOF: multiple catalytic centers

Ngai, *JACS*, 2017

Ru(bpy)₃(PF₆)₂ (1 mol%) La(OTf)₃ (20 mol%) bpy (40 mol%)

Hantzsch ester (2 equiv) MeCN (0.1 M), 23 °C, 18 hr 30 W Blue light

Up to 86% yield >20 examples

Ngai, *JACS*, 2017

Jiang, *JACS*, 2019

DPZ (0.5 mol%) LA (20 mol%) Hantzsch ester (1.5 equiv)

35 mg MS $CHCl_3/C_6F_5H=4:1$ -50 °C, 3 W Blue light, 60 hr

Up to 93% yield, 90% ee >30 examples

Jiang, *JACS*, 2019

LA (20 mol%) Hantzsch ester (1.5 equiv)

DPZ (0.5 mol%)

35 mg MS CHCl₃/C₆F₅H = 4:1 -50 °C, 3 W Blue light, 60 hr

Up to 93% yield, 90% ee >30 examples

$Ar = 2,4,6-iPr_3C_6H_2$

Two key components: PC + Lewis acid

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

 $AI(NO_3)_3 \bullet H_2O$

0.14 mmol

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

Construction of MOF: Lewis acid (AI) + Ir

MOF 1-OTf-Ir: Al(OH)(dcbpy)_{0.7} [lr(dcbpy)(ppy)₂Cl]_{0.1}(OTf)₄

Construction of MOF: Lewis acid (AI) + Ir

[lr(dcbpy)(ppy)₂Cl]_{0.1}(OTf)₄

Catalytic reactivity

Catalytic reactivity

1 equiv

2 equiv

2 equiv

Catalytic reactivity

2 equiv

1 equiv

Catalytic reactivity

2 equiv

1 equiv

90% yield

variations from standard conditions	1c (%)
without light	none

variations from standard conditions	1c (%)
without light	none
without MOF 1-OTf-Ir	trace

MOF 1-OH-Ir

[lr]

MOF 1-OH-Ir

[lr]

MOF 1-OTf

MOF 1-OTf

Catalytic reactivity

2 equiv

1 equiv

90% yield

1 equiv

2 equiv

90% yield

2 equiv

1 equiv

90% yield

2 equiv

1 equiv

90% yield

Recycle of the 1-OTf-Ir

Centrifugation and MeCN wash

Catalytic reactivity

2 equiv

1 equiv

90% yield

90% yield

Boc

70% yield

51% yield

78% yield

53% yield

Organic synthetic applications of MOFs

What are possible organic synthetic applications of MOFs?

Case study 1: Enhanced reactivity

Case study 2: Novel reagents based on MOFs

Fluoxetine antidepressant Fleroxacin analog antibacterial

Seletracetam anticonvulsant

О

Well-established fluorination reagents

Keasler, K. T.; Zick, M. E.; Stacy, E. E.; Kim, J.; Lee, J. H.; Aeindartehran, L.; Runcevski, T.; Milner, P. J. Science 2023, 381 (6665), 1455-1461.

Keasler, K. T.; Zick, M. E.; Stacy, E. E.; Kim, J.; Lee, J. H.; Aeindartehran, L.; Runcevski, T.; Milner, P. J. Science 2023, 381 (6665), 1455-1461.

Keasler, K. T.; Zick, M. E.; Stacy, E. E.; Kim, J.; Lee, J. H.; Aeindartehran, L.; Runcevski, T.; Milner, P. J. Science 2023, 381 (6665), 1455-1461.

Underexplored gaseous fluorination reagents

Underexplored gaseous fluorination reagents

со

Keasler, K. T.; Zick, M. E.; Stacy, E. E.; Kim, J.; Lee, J. H.; Aeindartehran, L.; Runcevski, T.; Milner, P. J. Science 2023, 381 (6665), 1455-1461.

Thermal and chemical stability

Maximum pore volume

Favorable and reversible adsorption of fluorinated gases

M = Mg, Mn, Fe, Co, Ni, Cu, Zn

Which metal ion should be employed?

Quantitative evaluation

Quantitative evaluation

enthalpy of adsorption (- ΔH): large value indicates favorable adsorption
Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- ΔH): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Quantitative evaluation

enthalpy of adsorption (- Δ H): large value indicates favorable adsorption

Activation of

Mg₂(dobdc) at 300 °C

powder

powder

solid-addition

funnel

powder

solid-addition

funnel

powder

direct addition

(sonicate)

solid-addition

funnel

direct addition

(sonicate)

powder

Pł

Pł

Duration	Freezer	Freezer	
1 d	83%		
3 d	88%		
7 d	82%		
14 d	60%		
2 mos	_		

Pł

Storage Duration	Glovebox Freezer	Lab Freezer	Desiccator	Wax Capsule
1 d	83%	89%		
3 d	88%	83%		
7 d	82%	80%		
14 d	60%	64%		
2 mos	—	—		

VDF-Mg₂(dobdc) stability study

Storage Duration	Glovebox Freezer	Lab Freezer	Desiccator	Wax Capsule
1 d	83%	89%	82%	
3 d	88%	83%	72%	
7 d	82%	80%	47%	
14 d	60%	64%	0%	
2 mos	_	_	—	

VDF-Mg₂(dobdc) stability study

Storage Duration	Glovebox Freezer	Lab Freezer	Desiccator	Wax Capsule
1 d	83%	89%	82%	80%, 82%*
3 d	88%	83%	72%	77%
7 d	82%	80%	47%	81%
14 d	60%	64%	0%	82%
2 mos	—	—	—	77%, 81%*

Organic synthetic applications of MOFs

What are possible organic synthetic applications of MOFs?

Case study 1: Enhanced reactivity

Case study 2: Novel reagents based on MOFs

Conclusions

What are MOFs?

How to synthesize MOFs?

Organic synthetic applications MOFs

Conclusions

What are MOFs?

How to synthesize MOFs?

Organic synthetic applications MOFs

"addressing currently unmet needs in catalysis instead of trying to outcompete homogeneous catalysts in areas where they excel"

Acknowledgements

Prof. David MacMillan

The MacMillan Group

Alkene-Alcohol Project

Iona McWhinnie

Dr. Nate Dow

Amy Chan

Cyclization of N-heterocycles

Noah Bissonnette

Prof. Saegun Kim

Advisory/General Committee

Prof. David MacMillan

Prof. John Groves

Prof. Erik Sorensen

Prof. Robert Knowles

Administration

Caroline Phillips

Meredith LaSalle-Tarantin

Patti Wallack

Instrumentation

Ken Conover

Dr. István Pelczer

Dr. John Eng

Dr. Phil Jeffrey

Edward C. Taylor Fellowships

