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The Challenge of Feeding 9 Billion People

World Population: 1950-2050
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studies suggest world needs 70-100% more food by 2050
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Uses of Pesticides

Pesticide — a substance used for destroying insects or

other organisms harmful to cultivated plants or to animals

Untreated corn
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Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Various Types of Pesticides

herbicides insecticides

B weeds compete for light and nutrients B protection for pre- and post-harvest
B selective and non-selective varieties M also used to control disease vectors
fungicides fumigants

B some fungi produce carcinogens M volatile chemicals to eliminate pests

B fungi responsible for potato famine B e.g. bromomethane (phased out)

Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Timeline of Pesticide Use
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Agrochemical Industry Breakdown

Conventional seeds
(~ $19 bn)

Crop Protection
Herbicides
Insecticides
Fungicides

Seed treatment

(~ $47 bn)
G.M. seeds

(~ $18 bn)

Non-crop uses
(~ $6.4 bn)

global agrochemical industry in 2012: ~$91 billion

Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Factors Shaping Agrochemical Research

major factors shaping agrochemical research how do we overcome this challenge?

M growing resistance of species to pesticides B develop new pesticides, especially with

novel mechanisms/modes of action (MOAS)

M rotation of pesticides with different MOAs

evolution of resistance for insects, plants, and pathogens
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Sparks, T. C.; Lorsbach, B. A. Pest Manag. Sci. 2017, 73, 672—677.



Factors Shaping Agrochemical Research

major factors shaping agrochemical research
B growing resistance of species to pesticides

B increasingly stringent regulatory standards
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B need for more favorable environmental, non-target, and toxicological profiles

Sparks, T. C. Pestic. Biochem. Physi. 2013, 1, 8-17.
Sparks, T. C.; Lorsbach, B. A. Pest Manag. Sci. 2017, 73, 672—677.



Factors Shaping Agrochemical Research
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M finding molecules with improved efficacy, selectivity, and favorable environmental profiles takes longer

Sparks, T. C.; Lorsbach, B. A. Pest Manag. Sci. 2017, 73, 672—677.



Factors Shaping Agrochemical Research
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17% M 37% discovery, 51% development, 12% registration
Field Trials
16% B $286 million to develop pesticide

Discovery

] Biology M cash flow after launch often negative for 10+ years
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10% Environmental
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Sparks, T. C.; Lorsbach, B. A. Pest Manag. Sci. 2017, 73, 672—677.



Number of companies doing herbicide

Landscape of Agrochemical Companies
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B fewer companies control more of agro sales

Dow and DuPont agrochemical research

sectors combined to form Corteva in 2019

Phillips, M. W. A. Pest Manag. Sci. 2019, DOI: 10.1002/ps.5728.
Sparks, T. C.; Lorsbach, B. A. Pest Manag. Sci. 2017, 73, 672—677.
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Methods for Pesticide Discovery

cuticle
post-emergent pesticide spraying
. cell wall
(after plant germination)
most common method for application
epidermis
cell

pesticide
spraying

VA BT WA

absorption
into leaves

phloem movement
(leaves to roots)

xylem movement
(roots to leaves)
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movement
into soil

root uptake
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lipophilic

o

epicuticular waxes

cuticle proper
(cutin+wax)

cuticular layer
(cutin+wax + pectin)

agrochemicals require a balance

between hydrophilicity & lipophilicity

Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Methods for Pesticide Discovery

Lipinski’s Rule of 5 for pesticide development

Parameter Pharmaceuticals Herbicides Insecticides
Molecular mass < 500 > 150 and < 500 > 150 and < 500
mlog P <415 <35 >0and <5.0
H-bond donors <5 <3 <2
H-bond acceptors <10 >2and < 12 >1and <8
Rotatable bonds — <12 <12

different chemical environments require different physicochemical properties

Tice, C. M. Pest. Manag. Sci. 2001, 57, 3—16.



Methods for Pesticide Discovery

Other requirements of pesticides:

M |ong lasting activity and persistence
M very low cost of production

M safe for environment & human health

pesticide
spraying
spray drift o |
- mmmmmmm e plant metabolism
& hydrolysis
rainwash % volatilization

& photodegradation

¥

metabolism
in soil

leaching ! |
& adsorptiony <7 -

challenges of pesticide application

Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Science 2013, 341, 742—746.



Agrochemical Discovery Process

“ Development = Registration » Csmr:.le.r:i:lal
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Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Methods for Lead Generation in Pesticide Discovery

agrochemical companies utilize several methods for effective risk-benefit balance

methods for pesticide discovery

3rd Party Chem
data mining 3% Datamining - internal
Natural Products Chem :;;:enlng
competition inspired 18% \ /

NP inspired

target-site based
Ag-Like / Chem
Ideas
14%

ojuioilq
Aljonou

fragment based

novel scaffolds

diversity screening Competitor inspired Internal Proj Evol
35% 14%

origins of insecticides introduced since 1990 (n = 57)

Loso, M. R.; Garizi, N.; Hegde, V. B.; Hunter, J. E.; Sparks, T. C. Pest. Manag. Sci. 2017, 73, 678—685.
Sparks, T. C. Pestic. Biochem. Physi. 2013, 1, 8—17.



Natural Product Inspired Pesticides

@ Planis O «2,000
@ Fungi () >2.000
. Actinomyceles Q >20'000
Other Bactena ' ~50,000
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sources of natural products used for screening at Dow AgroSciences
@ Auxins N
@ Triketones
B Glufosinate rich source of new Modes of Action
Owm natural product-derived
@ Fludioxonil
O Pyrethroids pesticides (~$10 billion) ‘
W Mectins
@ Spinosyns )
mcrtp 60% of MOASs contain
B Non-NP-derived

natural product inspired chemical

market for crop-protection chemicals in 2011

Loso, M. R.; Garizi, N.; Hegde, V. B.; Hunter, J. E.; Sparks, T. C. Pest. Manag. Sci. 2017, 73, 678—685.



Natural Product Inspired Pesticides

NP derived pesticide classes

B Natural products
MeO:,,

NM62

spinosad
insecticide

NP possess all required properties
extremely rare event
of effective agrochemical product

Loso, M. R.; Garizi, N.; Hegde, V. B.; Hunter, J. E.; Sparks, T. C. Pest. Manag. Sci. 2017, 73, 678—685.



Natural Product Inspired Pesticides

NP derived pesticide classes

M Natural products B requires synthetic manipulations to NP

to enhance activity or stability

B Semi-synthesis
B requires ample supply of natural product

Me
~\\OI 1 QR
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MeO O Me Me* jl> MeO—<:\<O
MeHN Me O HG Me
abamectin
natural product

emamectin benzoate
insecticide

Loso, M. R.; Garizi, N.; Hegde, V. B.; Hunter, J. E.; Sparks, T. C. Pest. Manag. Sci. 2017, 73, 678—685.



Natural Product Inspired Pesticides

NP derived pesticide classes

B Natural products
B Semi-synthesis

B Synthetic mimics

0 SO,Me

Mesotrione
natural product

B physical properties such as solubility and
photostability unsuitable as pesticide

B usually low-probabilility approach due to molecular complexity

@) O Me
Me

@) (@)
Me Me

Leptospermone
herbicide

Loso, M. R.; Garizi, N.; Hegde, V. B.; Hunter, J. E.; Sparks, T. C. Pest. Manag. Sci. 2017, 73, 678—685.



Scaffold-Based Approach to Pesticide Discovery

Novel Scaffold Approach to Pesticide Design: ~
I
_— —_— N -
I
) _ plant/organism
novel scaffolds selected scaffold library synthesis

screening

B scaffold selected based on novelty, synthetic versatility, physical properties

significantly divergent from known structures in literature (de novo design), leads to new MOAs

Loso, M. R.; Garizi, N.; Hegde, V. B.; Hunter, J. E.; Sparks, T. C. Pest. Manag. Sci. 2017, 73, 678—685.



Scaffold-Based Approach to Sulfoxaflor Discovery

N library synthesis /S
/7 \ > o)
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sulfoximine scaffold targeted for fungicidal motif

identified by Dow AgroSciences
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Loso, M. R.; Garizi, N.; Hegde, V. B.; Hunter, J. E.; Sparks, T. C. Pest. Manag. Sci. 2017, 73, 678—685.



Structure-Based Approach to Pesticide Discovery

Structure-Based Approach

NS
—_— —_— | —_—
rational ligand design plant/organism
candidate protein crystal structure obtained & optimization screening

relatively new strategy, no current marketed pesticides developed through this approach

Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Science 2013, 341, 742—746.



Target-Based Approach to Pesticide Discovery

Target-Based Approach
N NS
_ —_— S
N I I
TNN *\y{:
library screening selection & elaboration | R
Fragment-Based Approach ‘
candidate protein plant/orga_mlsm
screening

N

fragment screen for fragment selection and

binding affinity systematic elaboration

very little success of in vitro hit translation to in vivo; Ag-like hits with translatable properties rare

Loso, M. R.; Garizi, N.; Hegde, V. B.; Hunter, J. E.; Sparks, T. C. Pest. Manag. Sci. 2017, 73, 678—685.



Agrochemical Discovery Process

“ Development = Registration » Csmr:.le.r:i:lal
esticide

Number of compounds

Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Optimization of Lead Candidates

iterative process to improve pesticide properties Design

M increasing level of potency

Analyze Synthesize
M selectivity for desired target
B optimize physical properties (e.g. bioavailability) Test
QSAR Data Modeling In Silico Modeling

Ar
data &
N predicted
Ro R tivit
L linear activity
- regression
B quantitative structure-activity relationships B modern computational tool for rapid 3D modeling
B data-driven technique B requires structural information of protein

Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Agrochemical Discovery Process

“ Development = Registration » Csmr:.le.r:i:lal
esticide

Number of compounds

Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Development of Lead Candidates

Questions in pesticide development phase:

1. Does it work? at this point, formulation method is optimized

for stability, application, and plant uptake

S

glasshouse tests field trials
plants well cared for, no other pests more realistic conditions (pests & weather)

Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Development of Lead Candidates

Questions in pesticide development phase:
1. Does it work? similar to pharmaceutical process chemistry,

2. Can it be made on scale? but larger scale and cheaper syntheses required

10-100 mg 10g-1kg

glasshouse screening

toxicological &

field trials
discovery chemistry environmental studies

manufacturing & sales

pesticide discovery & development process

Source: Syngenta’s Introduction to Agrochemicals and Modern Agronomy course



Innovative Chemistry Through Agrochemical Research

Chan-Lam Coupling: Discovered at DuPont Agricultural Products
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Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tet. Lett. 1998, 39, 2933—-2936.



Development of Lead Candidates

Questions in pesticide development phase:

1. Does it work?

2. Can it be made on scale?

3. Is it safe?
environmental health human health
where does pesticide go? how hazardous is it?
what does it decompose t0? how much is retained in food?
effect on non-target organisms? how much exposure during application?

more than 100 regulatory tests conducted before pesticide can be registered

Canturk, B.; Johnson, P.; Taylor, J.; Kister, J.; Balcer, J. Org. Process Res. Dev. 2019, 23, 2234-2242.



The Use of Radiolabeled Pesticides in R&D

several metabolic studies employ radiolabels

14 3 _ B .
‘ H B Aqueous hydrolysis and photolysis products

N B Metabolism in various crop species
Carbon Tritium

B Metabolic fate in livestock (cattle, goats, chicken)

commonly used radioisotopes in agrochem B ADME studies in rats

14C preferred due to enhanced metabolic stability

“The purpose for conducting metabolism studies is to determine the qualitative metabolic fate

of the active ingredient... To obtain this information, the pesticide is labelled with a radioactive atom”

—United States Environmental Protection Agency

Information from http://www.selcia.com/sites/default/files/Selcia_RadioLabelledPesticides15%28i%29.pdf



Case Study of Carbon-14 Labeling for Agrochemical Registration

B |ow application rate (7.5-30 g/ha vs. 280—2240 g/ha)

B ACS 2018 Green Chemistry Challenge Award

Rinskor™
selective herbicide

3 different radiolabeled molecules prepared

with unique carbon-14 incorporation

Canturk, B.; Johnson, P.; Taylor, J.; Kister, J.; Balcer, J. Org. Process Res. Dev. 2019, 23, 2234-2242.



Case Study of Carbon-14 Labeling for Agrochemical Registration
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3 different radiolabeled molecules prepared

with unique carbon-14 incorporation

Canturk, B.; Johnson, P.; Taylor, J.; Kister, J.; Balcer, J. Org. Process Res. Dev. 2019, 23, 2234-2242.



Case Study of Carbon-14 Labeling for Agrochemical Registration
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Pesticides of Note: Glyphosate

O O
||:| H Developed in 1974 by Monsanto
HO—/ OH
e main component of Roundup
glyphosate

non-selective herbicide Roundup Ready soybeans developed 1996

herbicidal activity of glyphosate

COLH CO,H
EPSP synthase .
phenylalanine
' va > 0 : > tyrosine
HO™ Y~ "OPO;> 7/ \”)Lo =~ OPO; — Y
OH o) OH tryptophan

5-enolpyruvyl shikimic

imic acid-3-ohosphat
shikimic acid-3-phosphate acid-3-phosphate

Agrobacterium CP4 EPSP synthase T insufficient biosynthesis of

amino acids kills plant

Roundup Ready
GMO crops with enzyme insensitive to glyphosate

Van Bruggen, A. H. C.; He, M. M.; Shin, K.; Mai, V.; Jeong, K. C.; Finckh, M. R.; Morris, J. G. Jr. Sci. Total Environ. 2017, 616, 255—-268.



Pesticides of Note: Glyphosate

O
H Developed in 1974 by Monsanto
N
\)j\OH

main component of Roundup

glyphosate
non-selective herbicide

Roundup Ready soybeans developed 1996 ;
'/‘n:f:,#’afa“"f

original process scale synthesis of glyphosate

O o) o) NEt;

s \)I\ aCId \)I\
- E— —P —P
MeO /P\H H)]\H HZN\)]\OH MeO OH HO OH

MeO MeO

glyphosate

B more recent methods avoid using triethylamine

Van Bruggen, A. H. C.; He, M. M.; Shin, K.; Mai, V.; Jeong, K. C.; Finckh, M. R.; Morris, J. G. Jr. Sci. Total Environ. 2017, 616, 255—268.



Pesticides of Note: Glyphosate
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Van Bruggen, A. H. C.; He, M. M.; Shin, K.; Mai, V.; Jeong, K. C.; Finckh, M. R.; Morris, J. G. Jr. Sci. Total Environ. 2017, 616, 255—-268.



Pesticides of Note: Glyphosate

100
a0 mSoyhean
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In 2015, 89% of corn, 94% of soybeans,

and 89% of cotton produced in the US

% of cultivated land

derived from herbicide-resistant GMO crops

1996 1999

In 2012, 127,000 tons glyphosate used in USA,
700,000 tons worldwide

residues of glyphosate found in 60—80% of the US general public

Van Bruggen, A. H. C.; He, M. M.; Shin, K.; Mai, V.; Jeong, K. C.; Finckh, M. R.; Morris, J. G. Jr. Sci. Total Environ. 2017, 616, 255—-268.



Pesticides of Note: Glyphosate

O O
||3| H glyphosate not only used for agricultural purposes
0o
B urban areas for weed control in streets/parks
glyphosate

non-selective herbicide B waterways to eliminate aquatic plants

based on recent reports, WHO reclassified glyphosate as probably carcinogenic to humans in 2015
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Van Bruggen, A. H. C.; He, M. M.; Shin, K.; Mai, V.; Jeong, K. C.; Finckh, M. R.; Morris, J. G. Jr. Sci. Total Environ. 2017, 616, 255—-268.



Pesticides of Note: DDT

Cl
Cl Cl
Cl [ ! Cl
DDT
first modern insecticide Paul Muller — 1948 Nobel Laureate

“for his discovery of the high efficiency of DDT
as a contact poison against several arthropods.”

DDT broadly employed 1945-1972 for:

B Agricultural tool
B WHO anti-malaria campaign
B Treating typhus and malaria in WWII

U.S. soldier sprayed for typhus-carrying lice
Turusov, V.; Rakitsky, V.; Tomatis, L. Environ. Health Perspec. 2002, 110, 125—-128.



Pesticides of Note: DDT

Cl

I~ - Sy
) LT 7 A oz
JC
Cl Cl ‘g™ /.
DDT
first modern insecticide Paul Mdller — 1948 Nobel Laureate
“for his discovery of the high efficiency of DDT
as a contact poison against several arthropods.”
DDT synthesis: nearly ideal organic synthesis
Cl
Cl Cl
Cl O
)]\ H,SO,
o - OC
Cl Cl
chlorobenzene chloral DDT

+25% other regioisomers

Turusov, V.; Rakitsky, V.; Tomatis, L. Environ. Health Perspec. 2002, 110, 125-128.



Pesticides of Note: DDT
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Silent Spring, 1962 — Rachel Carson
; S‘ l L r \,, l, B book documenting adverse environmental effects of DDT
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Carson, R., Darling, L., & Darling, L. (1962). Silent Spring. Boston : Cambridge, Mass.: Houghton Mifflin.



Pesticides of Note: DDT

Silent Spring, 1962 — Rachel Carson
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B book documenting adverse environmental effects of DDT
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