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Il DNA transcription to RNA
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B mRNA translation, protein synthesis
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Nucleoside Derivatives as Drug, Their Synthesis & Mode of Action

B Use of nucleoside derivatives of the treatment of :

m HIV (NRTI)

m Herpes virus (acilovir)

m Oncology

m Hepatitis C virus



HIV: 30 years of drug discovery
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M AIDS was first clinically observed in 1981 in the United States

M HIV appears to have originated in southern Cameroon through the evolution of a
simian immunodeficiency virus (SIV) that infects wild chimpanzees

B The names Human Immunodeficiency Virus & Acquired ImmunoDeficiency Syndrome
(HIV / AIDS) were first used in 1983

M Until 1987 no anti-HIV drug was available
M As of 2010 approximately 34 million people have HIV worldwide
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HIV: 30 years of drug discovery

M A large class of approved drugs target the reverse transcriptase

m NRTI & NtRTI Nucleoside & Nucleotide Reverse Transciptase Inhibitors (8 drugs)

m NNRTI Non-Nucleoside Reverse Transcriptase Inhibitors (5 drugs)
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HIV: 30 years of drug discovery

B FDA approved NRTI
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HIV: 30 years of drug discovery

B AZT synthesis: original Horwitz's synthesis
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B AZT synthesis: Glinski's synthesis
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HIV: 30 years of drug discovery

B ddl synthesis by BMS process 1988
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M NRTIs are prodrugs that require triphosphorylation to be activated
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HIV: 30 years of drug discovery

B NRTI mode of action: chain termination
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B NRTI mode of action: chain termination
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Limitation of the NRTI based treatment

B HIV-1 RT does not have proof-reading activity. This, combined with selective pressure from the drug leads to
mutations in reverse transcriptase that make the virus less susceptible to NRTIs and NNRTIs.

M There are two major mechanisms of NRTI resistance

B Reduced incorporation of the NRTI into DNA over the normal nucleotide. This results from mutations
in the N-terminal polymerase domain of the reverse transcriptase that reduce the enzyme’s affinity or
ability to bind to the drug

B Excision or hydrolytic removal of the incorporated drug. This ‘unblocks’ the DNA chain, allowing it
to be extended, and replication to continue.



HIV: 30 years of drug discovery

B Some viral mutations result in NRTI inefficacy
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NRTI based treatment limitations

M In order to overcome viral resistance, HAART (highly active antiretroviral therapy) has been developed. It uses
multiple drugs that act on different viral targets. HAART decreases the patient's total burden of HIV,
maintains function of the immune system, and prevents opportunistic infections that often lead to death.

B All NRTI drugs have a lot of side effects including diarrhea, headache, nausea, rash, fever....

Bl One of the most important side effect is due to the incorporation on the NRTI during the replication of the
DNA. Especially mitochondrial DNA due to the NRTI phosphorilation taking place in the mitochondria. This
results in mitochondrial dysfunction and cell energy deprivation.



Herpesviridae
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M The Herpesviridae is a large family of DNA viruses also known as herpesvirus

M 5 species of Herpesviridae exist:
m HSV-1— facial cold-sores
m HSV-2 — genital herpes
m Varicella zoster virus — chicken-pox and shingles
m Epstein-Barr virus — mononucleosis

m Cytomegalovirus — not been reported to cause human disease.

M More than 90% of adults have been infected with at least one of these, and a latent form of the
virus remains in most people
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principles for drug treatment" including the synthesis of aciclovir
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M Aciclovir was seen as the start of a new era in antiviral therapy as it is extremely selective
and low in cytotoxicity

B The synthesis of aciclovir was base on the structure of nucleosides isolated from a
Caribbean sponge, Cryptotethya crypta

M It was codiscovered by Howard Schaffer and Robert Vince in 1971. Schaffer then joined
Burroghs Wellcome (GSK) and continued the development of aciclovir with pharmacologist
Gertrude Elion

B Gertrude Elion received the Nobel prize of Medecine 1988 “for the discoveries of important
principles for drug treatment" including the synthesis of aciclovir

M |t was FDA approved in1982 for the treatment of HSV-1, HSV-2 and Varicella zoster virus
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Treatment of herpes: Aciclovir
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B Aciclovir is only converted to its active form in infected cells

B Aciclovir triphosphate shows a 50-fold selectivity action against viral DNA polymerases relative
to cellular polymerases. DNA incorporation results in premature chain termination of the viral
DNA
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M Aciclovir synthesis published in Nature in 1978
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Treatment of herpes: Aciclovir

M Aciclovir synthesis published in Nature in 1978
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M Chemotherapeutic agents act by killing cells that divide rapidly, one of the main properties
of most cancer cells

M But it also harms cells that divide rapidly under normal circumstances: cells in the bone
marrow, digestive tract, and hair follicles, explaining the commonly observed side effects.

M There are a total of 14 purine and pyrimidine antimetabolites that are approved by the FDA
for the treatment of cancer, which account for nearly 20% of all drugs that are used to treat
cancer

M The basic mechanism of action of purine and pyrimidine antimetabolites is similar. These
compounds diffuse into cells and are converted to analogues of cellular nucleotides by
enzymes of the purine or pyrimidine metabolic pathway. These metabolites then inhibit one
or more enzymes that are critical for DNA synthesis, causing DNA damage and induction of
apoptosis
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B Treatment of cells with MP does not result in the immediate inhibition of DNA synthesis. But
incorporation into DNA results in damage which are recognized by mismatch repair enzymes,
which causes a futile cycle of repair that results in lethal DNA damage

Parker, W.B. Chem. Rev. 2009, 109, 2880
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M Treatment of cells with FUra does not result in the immediate DNA synthesis termination.
The enzyme responsible for the removal of uracil from DNA, uracil glycosylase recognizes
FUra in DNA as a substrate and readily removes it from the DNA causing chain breakage

Parker, W.B. Chem. Rev. 2009, 109, 2880
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M Treatment of cells with FUra does not result in the immediate DNA synthesis termination.
The enzyme responsible for the removal of uracil from DNA, uracil glycosylase recognizes
FUra in DNA as a substrate and readily removes it from the DNA causing chain breakage

M FUra acts as a suicide substrate for thymidylate synthase blocking the synthesis of thymidine

Parker, W.B. Chem. Rev. 2009, 109, 2880
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M Fluoropyrimidines form a covalent bond with N5, N10-methylene FH, cofactor needed for the
thymidylate synthase
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Patrick, G. L. An Introduction to Medicinal Chemistry, Oxford University Press
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B Deoxynucleoside analogues' mechanisms of action are quite similar. They are converted
to their respective nucleotide analogues, which inhibit DNA synthesis by inhibition of DNA
polymerases and/or ribonucleotide reductase

B However, there are differences in the interaction of these agents and their metabolites with
the various metabolic enzymes and intracellular targets that impart unique properties to each
of these drugs and result in unique clinical activity

M All these drugs possess a 3' OH group, this means that they are not inducing chain termination
they are incorporated in the ADN and cause chain damage

M For example vidaza and decitabine are incorporated into DNA and inhibit DNA methylation.
Methylation of the 5 position of cytosine residues in DNA is a major mechanism that is used
by human cells to control gene expression. This result in the activation of epigenetically

repressed genes
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HO HO
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vidaza decitabine Parker, W.B. Chem. Rev. 2009, 109, 2880
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B Process synthesis of vidaza
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Vujjini, S. K. et al Org. Process Res. Dev. 2013, 17, 303
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Hepatitis C Virus

Envelope
glycoproteins

Envelope

M Approximately 180 million people are infected with HCV

M Early stage of HCV are usually asymptomatic and 20% of infected individuals naturally clear
the virus

M > 20% progress to develop chronic liver disease such as cirrhosis, hepatocellular carcinoma
or liver failure requiring liver transplantation

Sofia, M. J.; Chang, W.; Furman, P. A.; Mosley, R. T.; Ross, B. S. J. Med. Chem. 2012, 55, 2481
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Hepatitis C Virus
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B The HCV genome consists of a single open reading frame that is 9600 nucleotide bases long

M This single open reading frame is translated to produce a single protein product, which is then
further processed to produce smaller active proteins
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B The HCV genome consists of a single open reading frame that is 9600 nucleotide bases long

M This single open reading frame is translated to produce a single protein product, which is then
further processed to produce smaller active proteins

M In contrast to HIV, HCV does not incorporate its genome into the host cell, so the therapeutic
goal is to obtain total clearance of the virus from infected cell

Sofia, M. J.; Chang, W.; Furman, P. A_; Mosley, R. T.; Ross, B. S. J. Med. Chem. 2012, 55, 2481



Hepatitis C Virus

B Until 2011 the standard of care consists of the use of ribavirin with a weekly injection of
pegalated a-interferon. This functions by boosting the host immune system and does not act
directly on the virus
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pegalated a-interferon. This functions by boosting the host immune system and does not act
directly on the virus

B Two major drug targets have been identified: the NS3/4A serine protease and NS5B RNA-
dependent RNA polymerase (RdRp)
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Hepatitis C Virus

B Until 2011 the standard of care consists of the use of ribavirin with a weekly injection of
pegalated a-interferon. This functions by boosting the host immune system and does not act
directly on the virus

B Two major drug targets have been identified: the NS3/4A serine protease and NS5B RNA-
dependent RNA polymerase (RdRp)

M In 2011 two peptidomimetics Boceprevir (Merck) and Telaprevir (Vertex - J&J) targeting
NS3/4A were approved by the FDA

B Nucleoside analogue inhibitors are the main category of RdRp inhibitors with multiple drug
candidates in phase Il and Il

Structural Proteins Non Structural Proteins

E2

HO smmm ! I*Il'l‘ mEmE| mm -1 Ill]llll EEEEEEEEEEEEE + ER Lumen
z NS4b
REEl [ FU PR 3 Ul nl-— llll ' Cytosol

) R
OH OH cole NS3 NS5a NS5b
ribavirin

Sofia, M. J.; Chang, W.; Furman, P. A_; Mosley, R. T.; Ross, B. S. J. Med. Chem. 2012, 55, 2481



Nucleoside Inhibitors of the HCV NS5B Polymerase

B HCV NS5B polymerase has a hand shape with the catalytic site located in the palm

M At this site a ribonucleoside 5'-triphosphate binds through the coordination of a divalent metal
(Mg2* or Mn2*) and is subsequently added to the 3'-end of the growing RNA chain.

Sofia, M. J.; Chang, W.; Furman, P. A_; Mosley, R. T.; Ross, B. S. J. Med. Chem. 2012, 55, 2481



Nucleoside Inhibitors of the HCV NS5B Polymerase

M Exploration of modifications to both the base and ribose sugar portions of a ribonucleoside
identified important structural features to achieving anti-HCV activity.
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Nucleoside Inhibitors of the HCV NS5B Polymerase

M Exploration of modifications to both the base and ribose sugar portions of a ribonucleoside
identified important structural features to achieving anti-HCV activity.

B The 3'-OH has to be in the a-orientation to achieve whole cell activity without cytotoxicity
M The 1'-Base has to be in the p-orientation to obtain activity

B Mono- and di-substitutions at the 2'-position is tolerated
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M Exploration of modifications to both the base and ribose sugar portions of a ribonucleoside
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Nucleoside Inhibitors of the HCV NS5B Polymerase

M Exploration of modifications to both the base and ribose sugar portions of a ribonucleoside
identified important structural features to achieving anti-HCV activity.

B The 3'-OH has to be in the a-orientation to achieve whole cell activity without cytotoxicity

M The 1'-Base has to be in the p-orientation to obtain activity

B Mono- and di-substitutions at the 2'-position is tolerated
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Nucleoside Inhibitors of the HCV NS5B Polymerase

M The poor oral bioavailability led to the development of a ester prodrug for clinical studies
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Nucleoside Inhibitors of the HCV NS5B Polymerase

M The poor oral bioavailability led to the development of a ester prodrug for clinical studies
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Nucleoside Inhibitors of the HCV NS5B Polymerase

M The 2'-OH was then replace by Fluorine
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M Ester prodrug RB-7128 is in phase 3 clinical trial
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Nucleotide Inhibitors of the HCV NS5B Polymerase
M Synthesis of PSI-6130
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Nucleoside Inhibitors of the HCV NS5B Polymerase

M 4' azido-nucleoside proved to be potent polymerase inhibitors
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B Ester prodrug R1626 was discontinued after significant hematological adverse events were
observed in a phase 2b study
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Nucleotide Inhibitors of the HCV NS5B Polymerase

B Many tested nucleosides fail to demonstrate activity in whole cell assays because they are
poor substrates for one or more of the kinases in the phosphorylation cascade.
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M In most cases the problematic step is the formation of the monophosphate by the first kinase
as it is the most discriminating of the three kinase enzymes involved

B The development of 5'-monophosphate nucleotide as prodrug seems attractive. However,
5'-monophosphate nucleotide can be enzymatically dephosphorylated and are negatively
charged; consequently, they do not enter cells and are unstable making them undesirable
as drug candidates. A new strategy was needed.
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poor substrates for one or more of the kinases in the phosphorylation cascade.

M In most cases the problematic step is the formation of the monophosphate by the first kinase
as it is the most discriminating of the three kinase enzymes involved

B The development of 5'-monophosphate nucleotide as prodrug seems attractive. However,
5'-monophosphate nucleotide can be enzymatically dephosphorylated and are negatively
charged; consequently, they do not enter cells and are unstable making them undesirable
as drug candidates. A new strategy was needed.

M In order to be successful nucleotide prodrugs need to display several characteristics:

m Chemically stable for oral administration and towards gastrointestinal track

m Good absorption and be able to reach the liver intact
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Nucleotide Inhibitors of the HCV NS5B Polymerase

B Many tested nucleosides fail to demonstrate activity in whole cell assays because they are
poor substrates for one or more of the kinases in the phosphorylation cascade.

M In most cases the problematic step is the formation of the monophosphate by the first kinase
as it is the most discriminating of the three kinase enzymes involved

B The development of 5'-monophosphate nucleotide as prodrug seems attractive. However,
5'-monophosphate nucleotide can be enzymatically dephosphorylated and are negatively
charged; consequently, they do not enter cells and are unstable making them undesirable
as drug candidates. A new strategy was needed.

M In order to be successful nucleotide prodrugs need to display several characteristics:
m Chemically stable for oral administration and towards gastrointestinal track

m Good absorption and be able to reach the liver intact

M To target the liver selectively, hepatic enzymes should be involved with unmasking the
5'-monophosphate group
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Nucleotide Inhibitors of the HCV NS5B Polymerase

M Three main strategies have be employed:
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M Three main strategies have be employed:

ProTides HepDirect
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Nucleotide Inhibitors of the HCV NS5B Polymerase

B Metabolic activation of SATE monophosphate prodrugs
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B Metabolic activation of SATE monophosphate prodrugs
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Nucleoside Derivatives as Drug, Their Synthesis & Mode of Action

M Due to the importance of nucleoside in the cell cycle of life, nucleoside analogue have
been used in a broad range of therapeutic area

M It is interesting to note that even though the structures of these analogues are similar they
display a large array of mode of action

M The development of new mono-phosphate analogues will enable the development of more
active and selective drug



