## *Hypervalent Silicon: Bonding, Properties and Synthetic Utility*



MacMillan Group Meeting Ian Storer 20th July, 2005

### Hypervalent Silicon: Reactivity and Application in C-C Bond Formation presentation outline

#### Introduction to hypervalent silicon chemistry

- comparison of silicon with carbon reactivity & coordination
- physical and chemical reactivity characteristics of hypervalent silicon complexes
- bonding considerations
- Asymmetric C(sp<sup>3</sup>) C(sp<sup>3</sup>) bond forming reactions Organocatalytic Lewis base catalysis
  - Conceptual origins Sakurai allylation reaction (mid 1980s)
  - Asymmetric addition of allyl silanes Kobayashi, Denmark, Kocovsky (1994-present)
  - Asymmetric synthesis of aldol products Denmark (1994-present)
- $\blacksquare$  C(sp<sup>n</sup>) C(sp<sup>2</sup>) bond forming reactions
  - Pd cross-coupling Denmark (1994-present)

#### **Useful Reviews:**

• Hypervalent Silicon as a Reactive Site in Selective Bond-Forming Processes. Rendler, S., Oestreich, M., *Synthesis.* **2005**, *11*, 1727-1747.

- Carbon-Carbon Bond Forming Reactions Mediated by Silicon Lewis Acids. Dilman, A. D., Ioffe, S. L., *Chem. Rev.* **2003**, *103*, 733-772.
- Comparison of Phosphorus and Silicon: Hypervalency, Stereochemistry and Reactivity. Holmes, R. R., *Chem. Rev.* **1996**, *96*, 927-950.
- Reactivity of Penta- and Hexacoordinate Silicon Compounds and Their Role as Reaction Intermediates. Chult, C., Corriu, R. J. P., Reye, C., Young, J. C., *Chem. Rev.* **1993**, *93*, 1371-1448.
- Corriu, R. J. P.; Perz, R.; Réye, C. *Tetrahedron*, **1983**, *39*, 999.

### Introduction to Silicon Chemistry physical properties

#### Physical characteristics

• Silicon comes directly below carbon in periodic table – atomic no. =  $14 (3s^2 3p^2)$ 

| Electronegativity (Allred-Rochow scale) |     | $\sigma\text{-Bond}$ strengths (kcal/mol) |           | Average Bond Lengths (Å) |              |
|-----------------------------------------|-----|-------------------------------------------|-----------|--------------------------|--------------|
| Si                                      | 1.7 | C–C                                       | 83<br>76  | C–C                      | 1.54<br>1.87 |
| Н                                       | 2.1 | Si–Si                                     | 53        | 0-31                     | 1.07         |
| С                                       | 2.5 | C–H<br>Si–H                               | 83<br>76  | C–O                      | 1.43<br>1.66 |
| CI                                      | 3.0 | 0.11                                      |           | 010                      | 1.00         |
| Ν                                       | 3.0 | C–O<br>Si–O                               | 86<br>108 |                          |              |
| 0                                       | 3.5 | C–N                                       | 83<br>76  |                          |              |
| F                                       | 4.0 | C-F                                       | 116       |                          |              |

• Silicon forms **very strong bonds to oxygen and fluorine.** Much of organosilicon chemistry is driven by the formation of these bonds at the expense of weaker bonds

• Silicon does not form very stable multiple bonds, as the large 3p orbital on Si does not overlap well with the 2p orbital on C, O or N

| $\pi$ -Bond s | strengths | (kcal | /mol) |
|---------------|-----------|-------|-------|
|---------------|-----------|-------|-------|

Si=C, Si=O and Si=N are generally not found

### Coordination of Silicon vs Carbon

common coordinations

Carbon (2s<sup>2</sup> 2p<sup>2</sup>): adopts 3- and 4- coordinate complexes



- Carbon is unable to access hypervalent complexes
- Silicon is below carbon in the periodic table but is capable of very different bonding characteristics

■ Silicon (3s<sup>2</sup> 3p<sup>2</sup>): adopts 4-, 5- and 6- coordinate complexes



- How does silicon access these higher coordination complexes? need to consider the bonding options available
- What are the reactivity profiles of the different coordination states?

## Hypervalent Silicon : Pentavalent and Hexavalent Complexes

Chemical Reactivity

#### Silicon can adopt 4-, 5- and 6- coordinate complexes



Electron density at Si decreases with increased coordination, causing the electropositive character (Lewis acidity) of the Silicon centre to be increased

How does the extracoordination or hypervalency originate – vacant d-orbitals on Si combined with the effect of  $\sigma^*$  (Si–L) orbitals



Gillespie, R. J. *Chem. Soc. Rev.*, **1992**, *21*, 59. Michael, F. *Evans Group Seminar: Hypercoordinate Main Group Compounds*, **1999**.

### The Role of d–Orbitals in Main-Group Compounds

pentavalent compounds

How do 3s, 3p and 3d orbitals really hybridize to permit pentavalency?



The d-orbitals must be close enough in energy to the s and p orbitals to mix favourably

The 3sp<sup>2</sup>dp hybridization would come at a massive energetic cost of >200 kcal/mol rendering this unlikely to ever occur – sp<sup>2</sup>p hybridization is likely to occur preferentially

#### ■ 3d orbitals are still involved to a limited extent

The d-orbitals have been essential for complete computation of all main group compounds
Their role appears to be confined to that of polarization of the p-orbitals – d-orbital occupation of <0.3e</p>



Michael, F. Evans Group Seminar: Hypercoordinate Main Group Compounds, 1999.

### Hypervalent Main Group Complexes The Existence of 3c–4e Bonds

### How do 3s, 3p and 3d orbitals really hybridize to permit pentavalency?



- The filled non-bonding MO has all of the electron density on the ligand atoms
- Consequently ligands/atoms that stabilize electron density (electronegative) promote 3c–4e bonding.
- This is why virtually all hypervalent compounds bond F, CI, OR!
- Bent's rule: Electronegative elements prefer bonds with more p-character
- Result: Hypervalent compounds are more d+ at the central atom (Si) more Lewis acidic



### Hypervalent Silicon

#### bond order and charge distribution

#### Consider Bond Order and charge distribution



#### Study of charge distribution

| Complex                            | Coordination | Si charge | Ligand charge                                          |
|------------------------------------|--------------|-----------|--------------------------------------------------------|
| SiH₄                               | 4            | +0.63     | –0.16                                                  |
| SiH₅ <sup>−</sup>                  | 5            | +0.84     | –0.29(eq), –0.49(ax)                                   |
| SiH₃F                              | 4            | +1.10     | –0.15(H), –0.67(F)                                     |
| SiH₃F₂ <sup>−</sup>                | 5            | +1.26     | –0.26(H), –0.74(F)                                     |
| SiF <sub>4</sub>                   | 4            | +1.434    | –0.358                                                 |
| SiF <sub>4</sub> .NH <sub>3</sub>  | 5            | +1.470    | –0.397(F, eq), –0.385(F, ax), +0.084(NH <sub>3</sub> ) |
| SiF <sub>4</sub> .2NH <sub>3</sub> | 6            | +1.463    | –0.463(F), +0.196(NH <sub>3</sub> )                    |

Voronkov, M. Top. *Curr. Chem.* **1986**, *131*, 99. Corriu, R. *Chem. Rev.* **1993**, *93*, 1371.

### Reactivity at Silicon - Parameters

Lewis acidity of Tetracoordinate Si

Activation by Lewis bases



5-coordinate







- limited to electronegative ligands on Si and/or strongly Lewis basic Nu
- Lewis base catalyzed activation- Denmark

Activation driven by 'strain release Lewis acidity'

Cyclobutane 'strained' silacycles – Myers (1992), Denmark (1993)



• Reactive driving force = release of ring strain

Cyclocycles 'strained' with diamine ligands – Leighton (late 1990s–present)



• Long Si–N bonds distort the 5-membered ring – strained cycle

## Hypervalent Silicon

historical perspective

Silicon compounds with a coordination number higher than four have been known since the early 19th century



Gay-Lussac, J. L.; Thenard, L. J. *Mémoires de Physique et de Chimie de la Société d'Arcueil,* **1809**, *2*, 317. Davy, J. *Phil. Trans. Roy. London*, **1812**, *102*, 352.

Mechanism of fluoride deprotection of silyl ethers



• Driving force: the strength of Si–F bond (135 kcal/mol)

### Lewis Base Activation : Hydride Transfer

racemic hydrosilation

■ Hydrosilation – Corriu (1981)



Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. *Tetrahedron*, **1981**, *37*, 2165. Corriu, R. J. P.; Perz, R.; Reye, C. *Tetrahedron*, **1983**, *39*, 999.

### Hypervalent Silicon : Hydride Transfer

asymmetric hydrosilation



• Problem: Product alkoxide can also act as a Lewis base catalyst – alternative low ee reaction

### Hypervalent Silicon : Lewis Base Catalyzed Allylation

Seminal Contributions



Sakurai, H. Synlett, 1989, 1.

### Kobayashi's Observation: DMF Promotes Allylations

Seminal Contributions



Important discovery: Neutral Lewis bases such as DMF can activate trichlorosilanes!!

#### Reaction is stereospecific



High diastereoselectivity indicative of a rigid closed transition state

Kobayashi, S.; Nishio, K. *Tetrahedron Lett.* **1993**, *34*, 3453-3456. Kobayashi, S.; Nishio, K. *J. Org. Chem.* **1994**, *59*, 6620-6628.

## Rationale Behind the Kobayashi Allylation

diastereoselective closed transition state

<sup>29</sup>Si NMR Chemical Shifts of (Z)-crotyltrichloro silane in various solvents



Kobayashi proposes a 6-coordinate Si, closed transition state



• Dual activation of both electrophile and nucleophile via a 6-membered closed TS.

Kobayashi, S.; Nishio, K. *Tetrahedron Lett.* **1993**, *34*, 3453-3456. Kobayashi, S.; Nishio, K. *J. Org. Chem.* **1994**, *59*, 6620-6628.

### Denmark Expands the Potential Phosphoramides

#### Re-examined common Lewis Base additives



| Lewis base         | solvent                 | conversion | time         | yield      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------|-------------------------|------------|--------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DMF (1 eq)         | benzene - d6            | 83         | 70 h         | n/a        | $\begin{array}{c} & \overset{\text{Me}_{2}\text{N}}{\underset{\text{Me}_{2}\text{N}}{\underset{\text{NMe}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{NMe}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{O}}{\underset{\text{Me}_{2}}{\overset{\text{Me}_{2}}{\overset{\text{Me}_{2}}{\overset{\text{Me}_{2}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}}{\overset{\text{M}}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}{\overset{\text{M}}}{\overset{\text{M}}{\overset{\text{M}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}}{\overset{M}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}}{\overset{M}}}{\overset{M}$ |
| HMPA (1 eq)        | benzene - d6            | n/a        | n/a          | 77%        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>HMPA (1 eq)</b> | <b>CDCI<sub>3</sub></b> | 63         | <b>4 min</b> | <b>85%</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>HMPA (1 eq)</b> | acetonitrile - d3       | 63         | <b>4 min</b> | 86%        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HMPA (0.1 eq)      | benzene - d6            | 60         | 46 h         | n/a        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HMPA (0.1 eq)      | THF - d8                | 80         | 124 h        | n/a        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

- In contrast to Kobayashi, Denmark found that HMPA gave superior results to DMF
- Reaction rate solvent dependent
- DMSO (sulfoxide) and pyridine N-oxide were tried, but were not compatible with the reaction
- Can an asymmetric HMPA analogue be developed to catalyze the enantioselective variant?

Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 6161-6163.

### Early Lewis Base Catalyzed Asymmetric Allylations

#### Denmark - chiral phosphoramides



Assumed a similar associative mechanism of action to DMF



• Low enantioselectivities, generally high loadings of catalyst only aromatic aldehydes tolerated – but a huge leap in the right direction

Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 6161-6163.

### Early Lewis Base Catalyzed Asymmetric Allylations

Iseki also tried chiral HMPA and DMF

### Iseki (1996) - chiral phosphoramides





• Low enantioselectivities, generally high loadings of catalyst and only aromatic aldehydes were tolerated

Iseki, K. *Tetrahedron Lett.* **1996**, *37*, 5149-5150. Iseki, K. *Tetrahedron.* **1997**, *53*, 3513-3526.



• good to excellent enantioselectivities, only aliphatic aldehydes tolerated

Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. *Tetrahedron Lett.* **1998**, *39*, 2767-2770. Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. *Tetrahedron* **1999**, *55*, 977-988.

Denmark – Could the Allylation Strategy be Applied to Aldol Reactions? aldol of trichloro silylketene acetals

#### Transferring the concept



• HMPA catalyzed the trial reactions, but a potential background reaction was evident

Denmark, S. E.; Winter, S. B. D.; Su, X.; Wong, K. -T. J. Am. Chem. Soc. 1996, 118, 7404-7405.



R = cinnamyl, a-methylcinnamyl, naphthyl, 4-phenyl-phenyl, cyclohexyl, *t*Bu

• Trichlorosilyl enol ethers are prepared from the corresponding trimethylsilyl enol ethers by treatment with SiCl<sub>4</sub> and catalytic Hg(OAc)<sub>2</sub>

Denmark, S. E., et al., J. Org. Chem., 1998, 63, 918.



The uncatalyzed reaction at 0° C is slightly anti selective (2:1)

#### Enforced E-enol silane aldol reaction: anti selective



R = cinnamyl, a-methylcinnamyl, naphthyl, phenyl

• The uncatalyzed reaction at 0 °C is highly *syn* selective (5:1 - 49:1)

Denmark, S. E., et al., *J. Am. Chem. Soc.*, **1996**, *118*, 7404-7406. Denmark, S. E., et al., *J. Am. Chem. Soc.*, **1997**, *119*, 2333-2334.

### Enantioselective Catalysis by Phosphoramides

preliminary rational for the aldol stereochemistry



- Chair-like transition state accounts for observed diastereo- and enantioselectivities
- Precise coordination geometry was not known at this stage

Denmark J. Am. Chem. Soc. 1997, 119, 2333-2334.

### Enantioselective Catalysis by Phosphoramides Intriguing Observations - New TS Required!

### Diastereoselectivity dependent on catalyst loading



Catalyst change give a complete switch in diastereoselectivity



- Anti-diastereoisomer dominates with less bulky ligands and high concentrations
- *Syn-*diastereoisomer dominates with more bulky ligands and low concentrations

Denmark J. Am. Chem. Soc. 1998, 120, 12990.

### Enantioselective Catalysis by Phosphoramides Intriguing Observations - New TS Required!



Positive non-linear effect using less bulky catalyst

• A new mechanistic postulate is needed

#### Conclusion: 2 pathways operating (a) TS contains 1 molecule of catalyst - syn product (b) TS contains 2 molecules of catalyst - anti product

- R=Me catalyst operates via mix of (a) and (b).
- R=Ph catalyst operates via mostly (a)

Denmark J. Am. Chem. Soc. 1998, 120, 12990.

### Denmark: Asymmetric Lewis Base Catalyzed Aldol Reaction

Refined Mechanism: Dissociative



Ligand binding forces Cl<sup>-</sup> dissociation. Experimental evidence:

- Bu<sub>4</sub>NCI retards the reaction rate common ion effect
- Bu<sub>4</sub>NOTf and Bu<sub>4</sub>NI accelerate the rate by increasing ionic strength

Denmark J. Am. Chem. Soc. 1998, 120, 12990.

### Revisiting the Phosphoramide Asymmetric Allylations

Kinetic Study



Positive non-linear relationship with catalyst ee - seen similar indicators in the aldol work!

Proposal: The 1.77th order in catalyst is due to competing mechanisms involving 1 or 2 prosphoramides on silicon

### Enantioselective Allylation Mechanism

Dissociative Mechanism



- Enantioselectivity is likely lower because the cationic octahedral TS gives the opposite facial selectivity to the cationic trigonal bipyramidal TS.
- Would a new bidentate phosphoramide avoid the problem of mono-coordination in allyations?

Denmark J. Am. Chem. Soc. **2000**, *122*, 12021. Denmark J. Am. Chem. Soc. **2001**, *122*, 9488.

### Lewis Base Catalyzed Asymmetric Allylations

pyridine N-oxides

Nakajima - chiral N-oxides





• good to excellent enantioselectivities, only aliphatic aldehydes tolerated

Proposed transition state model - cationic hexacoordinate



- Bidentate chelation to give a 6-coordinate octahedral silicon
- Kocovsky later made a library of related catalysts and optimized this reaction further

Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S.-I. J. Am. Chem. Soc. 1998, 120, 6419-6420

### Allylation: Solving the Dual Mechanism Problem

bidentate catalysts



Denmark J. Am. Chem. Soc. **2000**, 122, 12021. Denmark J. Am. Chem. Soc. **2001**, 122, 9488.

## Crossed-Aldol Reactions of Aldehydes

application of the bidentate catalyst



Denmark Angew. Chem. Int. Ed., 2001, 40, 4759.

### Limitations of Aldol Methodology to This Point

#### Trichlorosilanes are difficult to prepare and handle



Denmark, S. E.; Winter, S. B. D.; Su, X.; Wong, K.-T. J. Am. Chem. Soc. 1996, 118, 7404-7405.



Denmark, S. E.; Winter, S. B. D.; Su, X.; Wong, K.-T. J. Org. Chem. 1998, 63, 9517-9523.

#### Possible solution to this problem?



covalently bonded chiral backbones



First example of an asymmetric silicon-based Lewis Acid

Johannsen, M.; Jorgensen, K. A.; Helmchen, G. J. Am. Chem. Soc, 1998, 120, 7636.



Mathieu, B.; de Fays, L.; Ghosez, L. Tetrahedron Lett., 2000, 41, 9561.

non-covalently bonded chiral backbones

#### Ihara (2000) - resolution



Amine needed in stoichiometric quantities due to protonation

Ihara, L. et al. Chem. Commun., 2000, 1739.

#### Chiral Lewis Base activation



Stoichiometric in Si, but catalytic in chiral Lewis base

Chiral Lewis Base activated Lewis Acids





Indicative of the expected open (acyclic) transition state

Denmark, S. E.; Wynn, T., Beutner, G. L. J. Am. Chem. Soc. 2002, 124, 13405.



• Stoichiometric in Lewis acid: Ligand acceleration by catalytic Lewis base

Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc., 2005, 127, 3774-3789.

Denmark's bisphosphoramide complex



Denmark (2003) – Addition of silyl enol ethers



Denmark, S. E.; Heemstra J. R. jr. Org. Lett., 2003, 5, 2303.

Denmark (2003) – Addition of vinylogous enol ether



Denmark, S. E.; Beutner, G. L. J. Am. Chem. Soc., 2003, 125, 7800.

Denmark (2003) – Addition of isocyanides



Denmark, S. E.; Fan, Y. J. Am. Chem. Soc., 2003, 125, 7825.

Denmark's bisphosphoramide complex

Denmark (2005) – Calculated structure





benzaldehyde-silyl cation complex ortimized in GAMESS (US) at PM3 level

Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc., 2005, 127, 3774-3789.

# Hypervalent Silicon : Hydride Transfer

asymmetric hydrosilation



Malkov, A. V. Mariani, A.; MacDougall, K. N.; Kocovsky, P.; . Org. Lett., 2004, 6, 2253.

Summary and Conclusions

Over the past 10 years the power of hypervalent silanes has begun to be harnessed

■ Denmark in particular had made a large contribution to the development of this field both in terms of reaction development and mechanistic rationale

■ Problem: Difficult to accurately assess the precise nature, coordination and conformation of the active catalyst and transition state orientation