Catalysis in Continuous Flow

Robert J Comito

MacMillan Group Meeting April 11, 2012

Images: Ley, S. et al. Org. Lett. 2003, 5, 4665. Jensen, K. et al. Chem. Sci. 2011, 2, 287.

Introduction to Continuous Flow

- Continuous input of starting material and output of product
- Microreactor—a device where a small portion of the overall material is undergoing reaction at a given time
- Programmable conditions

Microreactors in Organic Synthesis and Catalysis. Wirth, T. ed.; Wiley-VCH: Weinheim, 2008, 103.

- Batch chemistry
 - economy of scale
 - homogenous product
 - conventional glassware
 - established procedures

 $\hat{\omega}$

Q

- Batch chemistry
 - batch-dependent output
 - lack of scalability
 - safety hazards
 - stop and go synthesis

 $\hat{\omega}$

- Continuous Flow
 - Shorter time from input to application
 - Cascading steps enables rapid generation of chemical complexity
 - Scalability through numbering up or longer run of continuous process
 - Reproducibility

Webb, D.; Jamison, T. Chem. Sci. 2010, 1, 675-680.

- Process Intensification
 - Hazardous conditions and intermediates are only present in small quantities
 - Point-of-source, point-of-use, and as needed
 - Lower space, inventory, and transportation requirements
 - Lower capital investment

LeViness, S. et al. Improved Fischer-Tropsch Economics enabled by Microchannel Technology. Velocys: 2011. Charpentier, J.-C. Chem. Eng. J. 2007, 134. 84-92.

Microreactors

- Enhanced physical and chemical control of reaction conditions
 - Large internal and interphasic surface to volume ratio
 - More efficient mass and thermal transfer
 - Precise stoichiometry and residence time
 - Immediate use of unstable or hazardous intermediates

Microreactors in Organic Synthesis and Catalysis. Wirth, T. ed.; Wiley-VCH: Weinheim, **2008**. Mason, B.; Price, K.; Steinbacher, J.; Bogdan, A.; McQuade, D.. Chem. Rev. **2007**, 107. 2300-2318 Also 2007 group meeting by Joe Carpenter "Microreactors and Microfluidic Cells in Organic Synthesis".

Heterogeneous Catalysis

- Advantages of heterogenous catalysis in flow
 - Faster relative reaction rates due to larger ratio of contact area to reaction volume, meaning a more efficient use of catalysts
 - Facile recoverability and reuse of catalyst and exclusion from product
 - Incorporation into multistep processes

Frost, C.; Mutton, L. Green Chem. 2010, 12, 1687-1703.

α,β-Unsaturated Ester Synthesis

- Acid- and base- catalyzed synthesis of α,β-unsaturated esters
 - Two mutually incompatible catalytic conditions spatially separated but run simultaneously
 - Commercially available
 Amberlyst-15 resin as acid
 catalyst
 - Piperazine supported on silica as base catalyst

Wiles, C.; Watts, P.; Haswell, S. Lab. Chip. 2007, 7, 322-330.

α,β-Unsaturated Ester Synthesis

- Catalyst integrity
 - 20 substrates prepared by recycling the catalyst
 - >200 turnovers per equivalent of catalyst
 - Yield > 99%
 - Purity > 99.9%

Wiles, C.; Watts, P.; Haswell, S. Lab. Chip. 2007, 7, 322-330.

CTFRs

- Copper tube flow reactors (CTFR)
 - Prepared from commercially available 1.0 mm id copper tubes
 - Flow and temperature control by Vapourtec R4 module
 - Leached copper efficiently scavenged by Quadrapure Thiourea resin (QP-TU) (Sigma-Aldrich)

Zhang, Y.; Jamison, T.; Patel, S.; Mainolfi, N. Org. Lett. 2011, 13, 280-283.

CTFRs

- Ullman condensations in CTFR
 - No added ligand or metal
 - Backpressure regulator allows high pressure and temperature

Zhang, Y.; Jamison, T.; Patel, S.; Mainolfi, N. Org. Lett. 2011, 13, 280-283.

CTFRs

- Sonogashira coupling in CTFR
 - Glaser-Hay products not observed in flow

Zhang, Y.; Jamison, T.; Patel, S.; Mainolfi, N. Org. Lett. 2011, 13, 280-283.

Pd EnCat

- Polyurea microcapsule polymers loaded with Pd(II) salt
- Several forms Commercially available (Sigma Aldrich)
 - Pd EnCat 30 and 40
 - Pd EnCat TPP 30 Pd(II)•PPh₃
 - Pd EnCat TOTP 30 Pd(II) P(o-tolyl)₃

Frost, C.; Mutton, L. *Green Chem.* **2010**, *12*, 1687-1703. Ramarao, C.; Ley, S.; Smith, S.; Shirly, I.; De Almeida, N. *Chem. Commun.* **2002**, 1132-1133.

Pd EnCat

- Suzuki coupling
 - Pd EnCat conveniently packed in HPLC columns
 - Short residence time (4 min)
 - Mild conditions (40°C)
 - Catalyst recycled 4 times with minimal loss in efficiency

Lee, C.; Holmes, A.; Ley, S.; McConvey, I.; Al-Duri, B.; Leeke, G.; Santos, R.; Seville, J. Chem. Commun. 2005, 2175-2177.

Pd EnCat

- Microwave-heated Suzuki couplings
 - 65s residence time in microwave cavity
 - In-line scavenging of base and excess boronic acids
 - Clean products isolated by evaporation of solvent

Det WD 20 µm TLD 5.0 Pd encap 22632/39 ASG 1032080

Baxendale, I.; Griffiths-Jones, C.; Ley, S.; Tranmer, G. Chem. Eur. J. 2006, 12, 4407-4416.

Baxendale, I.; Griffiths-Jones, C.; Ley, S.; Tranmer, G. Chem. Eur. J. 2006, 12, 4407-4416.

- PASSflow (polymer-assisted solution phase synthesis)
 - Monolithic polymer-glass composite produced by crosslinking polymer beads and their container
 - Efficient flow between beads gives high contact area with supported reagents and low pressure drops
 - Contact with walls of container minimize bypass
 - Few problems associated with polymer swelling

Kirshning, A.; Altwicker, C.; Drager, G.; Harders, J.; Hoffman, N.; Hoffman, U.; Schonfeld, H.; Solodenko, W.; Kunz, U Angew. Chem. Int. Ed. **2001**, 40, 3995-3998.

- Copolymer of styrene, polyvinylchlorobenzene, and divinylbenzene
 - Anionic reagents supported by counterion exchange
 - Reduction of ionically bound $PdCl_{3}$ gives 7-10 nm Pd particles

Kirshning, A.; Altwicker, C.; Drager, G.; Harders, J.; Hoffman, N.; Hoffman, U.; Schonfeld, H.; Solodenko, W.; Kunz, U Angew. Chem. Int. Ed. **2001**, 40, 3995-3998 Frost, C.; Mutton, L. Green Chem. **2010**, 12, 1687-1703.

• Transfer hydrogenation

Kirshning, A.; Altwicker, C.; Drager, G.; Harders, J.; Hoffman, N.; Hoffman, U.; Schonfeld, H.; Solodenko, W.; Kunz, U Angew. Chem. Int. Ed. **2001**, 40, 3995-3998 Frost, C.; Mutton, L. *Green Chem*. **2010**, *12*, 1687-1703.

- Ligand-free Heck reaction
 - High temperature in EtOH
 - Pd impurities effectively scavenged by Quadrapure thiourea column
 - Catalyst recycled up to 20 times

Nikbin, N.; Ladlow, M.; Ley, S. Org. Proc. Res. Dev. 2007, 11, 458-462.

Alpha-Chlorination

• Lectka's organocatalytic asymmetric alpha-chlorination reaction

Wack, H.; Taggi, A.; Hafez, A.; Drury, W.; Lectka, T. J. Am. Chem. Soc. 2001, 123, 1531-1532.

Chlorination Mechanism

Wack, H.; Taggi, A.; Hafez, A.; Drury, W.; Lectka, T. J. Am. Chem. Soc. 2001, 123, 1531-1532.

Alpha-Chlorination

- Motivations for developing a continous flow reaction
 - Reaction needs cryogenic temperatures to avoid side reactions with highly reactive intermediates
 - Flow would allow immediate consumption of reactive ketene and pentachlorophenyl ester
 - Integration into a multistep synthesis
 - Highly selective reaction with easily scavenged byproducts ideal for flow

Wack, H.; Taggi, A.; Hafez, A.; Drury, W.; Lectka, T. J. Am. Chem. Soc. 2001, 123, 1531-1532.

Flow Synthesis of BMS-275291

- Wang-resin bound cinchona alkaloid catalyst
 - Ketene formation and alpha-chlorination without exogenous base in the same step
 - Jacketed column and ice bath
 - Piperazine resin scavenges excess acyl chloride to give a high purity intermediate

France, S.; Bernstein, D.; Weatherwax, A.; Lectka, T. Org. Lett. 2005, 7, 3009-3012.

Flow Synthesis of BMS-275291

France, S.; Bernstein, D.; Weatherwax, A.; Lectka, T. Org. Lett. 2005, 7, 3009-3012.

Flow Synthesis of BMS-275291

France, S.; Bernstein, D.; Weatherwax, A.; Lectka, T. Org. Lett. 2005, 7, 3009-3012.

Multiphase Catalysis in Flow

- Microreactors can promote efficient mixing of phases
- Facile separation of phases at the end of reaction
 - Gaseous or aqueous reagents can be conveniently used in excess
 - Continuous extraction of byproducts
 - Recycling of catalysts and expensive solvents (florous solvents, ionic liquids)
- Dangerous gases (H₂, O₃) can be both produced and consumed continuously

Noel, T.; Buchwald, S. Chem. Soc. Rev. 2011, 40, 5010-5029.

Multiphase Catalysis in Flow

Noel, T.; Buchwald, S. Chem. Soc. Rev. 2011, 40, 5010-5029.

H-Cube Hydrogenations

- H_2 produced continuously by hydrolysis of H_2O
- When combined with a solid-supported catalyst cartridge (Pd/C), hydrogenation can be carried out in flow
- Automated fraction collection, followed by offline analysis, allows for rapid optimization of catalytic conditions

Knudsen, K.; Holden, J.; Ley, S.; Ladlow, M.; Adv. Synth. Catal. 2007, 349, 535-538.

- Semipermeable Teflon AF-2400 tube separates reaction phase from gas phase allowing efficient transfer of H_2 to the reaction
 - Also applied for ozonolysis in flow

O'Brien, M.; Taylor, N.; Polyzos, A.; Baxendale, I.; Ley, S. Chem. Sci. 2011, 2, 1250.

- Catalyst and substrate are combined then allowed to absorb H₂
- Additional residence time optimized for hydrogenation to run to completion
- In-line quantification of H₂-consumption by "bubble counting" the offgassed H₂ after the back pressure regulator

O'Brien, M.; Taylor, N.; Polyzos, A.; Baxendale, I.; Ley, S. Chem. Sci. 2011, 2, 1250.

• Quantitative conversions via homogenous hydrogenation

O'Brien, M.; Taylor, N.; Polyzos, A.; Baxendale, I.; Ley, S. Chem. Sci. 2011, 2, 1250.

• Sequential hydrogen absorption, heterogenous catalysis, and offgassing

O'Brien, M.; Taylor, N.; Polyzos, A.; Baxendale, I.; Ley, S. Chem. Sci. 2011, 2, 1250.

Oxidative Heck in Flow

 Dual channel reactor separated by polydimethylsiloxane (PDMS) membrane allows absorption

Park, C.; Kim, D.-P. J. Am. Chem. Soc. 2010, 132, 10102-10106.

Oxidative Heck in Flow

• Continuous absorption of oxygen and optimization of residence time allows efficient oxidative Heck coupling, with selectivity over alcohol byproduct

Steven's Oxidation in Flow

• Phase-transfer catalyzed NaOCl oxidation

Leduc, A.; Jamison, T.; Org. Proc. Res. Dev. 2012. In press.

Steven's Oxidation in Flow

• Ketones

• Esters

Leduc, A.; Jamison, T.; Org. Proc. Res. Dev. 2012. In press.

Steven's Oxidation in Flow

- Aldehydes
 - Overoxidation minimized by controlled mixing and residence time

Leduc, A.; Jamison, T.; Org. Proc. Res. Dev. 2012. In press.

Clogging in C—N Cross Couplings

- Buchwald-Hartwig cross couplings often involve inorganic bases and produce insoluble byproducts
- Standard conditions in flow generate clogs (NaCl in the image)

Hartman, R.; Naber, J.; Zaborenko, N.; Buchwald, S.; Jensen, K. Org. Proc. Res. Dev. 2010, 14, 1347-1357.

Clogging in C—N Cross Couplings

- Phase transfer conditions allows use of aqueous base and continuous extraction of byproducts
- Packed bed reactor consisting of fine stainless steel spheres for efficient mixing of two phases

Naber, J.; Buchwald, S. Angew. Chem. Int. Ed. 2010, 49, 9469-9474.

Aryl Fluorinations in Flow

- CsF finely ground and sieved to 45-106µm particles packed in a stainless steel packed bed reactor
- 20 min residence time needed at 120°C
- Yields 60-85%

Hartman, R.; Naber, J.; Zaborenko, N.; Buchwald, S.; Jensen, K. *Org. Proc. Res. Dev.* **2010**, *14*, 1347-1357. Noel, T.; Buchwald, S. *Chem. Soc. Rev.* **2011**, *40*, 5010-5029.

Clogging in C—N Cross Couplings

- Sonication shown to minimize clogging by "bridging"
- Increased flow rate causes abrasive conditions that break up channel deposits
- Rates comparable to batch, with residence times as low as 20 s

Hartman, R.; Naber, J.; Zaborenko, N.; Buchwald, S.; Jensen, K. *Org. Proc. Res. Dev.* **2010**, *14*, 1347-1357. Noel, T.; Buchwald, S. *Chem. Soc. Rev.* **2011**, *40*, 5010-5029.

- Sequential formation of aryl triflate and Heck coupling in flow
 - Formation of aryl triflates occurs most efficiently in CH_2CI_2
 - Byproducts need to be extracted with aqueous workup
 - CH₂Cl₂ detrimental to Pd-catalyzed reaction (needs DMF or toluene and elevated temperatures)

Hartman, R.; Naber, J.; Buchwald, S.; Jensen, K. Angew. Chem. Int. Ed. 2010, 49, 899-903..

- Triflation followed by HCI/H₂O extraction in segmented flow
 - Two phases effectively separated in flow

Hartman, R.; Naber, J.; Buchwald, S.; Jensen, K. Angew. Chem. Int. Ed. 2010, 49, 899-903..

- Dilution with DMF and off distillation of CH₂Cl₂ at elevated temperature
 - Segmentation with N_2 slugs and heating transfers CH_2CI_2 to vapor phase
 - Separation of vapor and solution phase with semipermeable PTFE membrane

Hartman, R.; Naber, J.; Buchwald, S.; Jensen, K. Angew. Chem. Int. Ed. 2010, 49, 899-903..

 In line reaction with olefin, Pd(OAc)₂/dppp, and base in DMF gives desired product in 69%

Hartman, R.; Naber, J.; Buchwald, S.; Jensen, K. Angew. Chem. Int. Ed. 2010, 49, 899-903...

Photochemistry in Flow

- Use of a microreactor with a high surface area increases efficiency of irradiation when penetration depth is short
- Process intensification advantages for large scale
 - Greater energy efficiency when a greater fraction of radiation is absorbed
 - Lower power, space, and thermal dissipation requirements with a smaller photoreactor

Gutierrez, A.; Jamison, T. *Org. Lett.* **2011**, *13*, 6414-6417. Tucker, J.; Zhang, Y.; Jamison, T.; Stephenson, C. *Angew. Chem. Int. Ed.* **2012**, *51*, in press.

Photolytic Activation of CpRu⁺

- CpRu(MeCN)₃(PF₆) is a highly labile Lewis-acidic catalyst
- Generated in batch by photodissociation of a benzene ligand
- More efficient irradiation in flow increases flux of photolysis

Ru-Catalyzed Ene Reaction in Flow

- Photolytic activation of CpRu+ catalyst
- In situ catalytic ene reaction to generate complex dienes

Gutierrez, A.; Jamison, T. Org. Lett. 2011, 13, 6414-6417.

Photoredox Catalysis in Flow

- Ru(bpy)₃Cl₂ has a high molar extinction coefficient (13000 M⁻¹cm⁻¹) at the wavelength being used (blue LED)
 - At 1 mM concentration 99% of radiation is absorbed in 1.5 mm
- Commercially available perfluoroalkoxy alkane (PFA) tubing
 - Inner diameter of 0.762 mm
 - 90% of incident radiation absorbed

Tucker, J.; Zhang, Y.; Jamison, T.; Stephenson, C. Angew. Chem. Int. Ed. 2012, 51, in press.

Photoredox Catalysis in Flow

- Benzyl iminium ions generated in flow and trapped offline with nucleophile
- Excess of nucleophiles can be generated under conditions not compatible with photoredox reaction

Tucker, J.; Zhang, Y.; Jamison, T.; Stephenson, C. Angew. Chem. Int. Ed. 2012, 51, in press.

Photoredox Catalysis in Flow

• Efficient source of malonyl radicals

Tucker, J.; Zhang, Y.; Jamison, T.; Stephenson, C. Angew. Chem. Int. Ed. 2012, 51, in press.