

Metal Organic Frameworks and Covalent Organic Frameworks

Permanently Porous, Crystalline Materials

permanent microporosity:

retaining < 2nm dimensional channels after vacuum evacuation of the solvent

crystallinity:

provides a regular, rigid structure readily analyzed by x-ray diffraction

Metal Organic Frameworks

Covalent Organic Framwork

Zeolite

Tailoring of the organic component provides the ability to moleculary design porous materials.

Zeolites: Crystalline Microporous Materials

Variation of counterion and Si/AI ratio provides the basis for broad array of microporous structures

Davis, M.; Lobo, R. *Chem. Mater.* **1992**, *4*, 756. Davis, M. *Chem. Mater.* **2013**, in press.

Zeolites: Crystalline Microporous Materials

Permanent microporosity—pore struture survives vacuum evacuation

>10 million tons consumed annually for industrial uses

Rhodes, C. J.; Sci. Prog. 2010, 93, 223.

Designing Novel Zeolites

Adjustment of the Si : Al ratio controls the framework charge, but also alters the structure

Counterion can direct pore shape/symmetry but unpredictable control over long-range structure

templated pore structure

The complex relationship between framework structure and composition limits chemical design.

Davis, M.; Lobo, R. *Chem. Mater.* **1992**, *4*, 756. Davis, M. *Chem. Mater.* **2013**, in press.

Organic Polymers

- Predictable design of molecular functionality into materials
- Limited control over long range structure

Polymer design can produce intrinsic microporosity, but not regular pore structure

polymer of intrinsic microporosity

Barton, et al. *Chem. Mater.* **1999**, *11*, 2633. McKeown, N.; Budd, P. *Macromolecules.* **2010**, *43*, 5163.

Metal Organic Frameworks

Combining Molecular Design and Structural Order

Metal Organic Framework

- Geometrical versatility
- Structural regularity

Organic Strut

- Synthetic versatility
- Modular functionality

Metal Organic Frameworks

Nodes and Struts

a simplified representation of MOFs

Strong, irreversible bond formation only produces ordered structures in simple cases

Labile linking is required for thermodynamic control in lattice structures.

Metal Organic Frameworks

Nodes and Struts

a simplified representation of MOFs

Weak, labile bonds form regular structures but lack structural and chemical integrity

.

Resilient structures require stronger linkages.

The Secondary Building Unit Strong Nodes Composed of Multiple Labile Bonds

Zn₄O(O₂CR)₆ octahedral node

Cr₃(O)(F)(OH₂)₂(O₂CR)₆ prismatic node

Cu₂(O₂CR)₄ square planar node

Zn₄O(bdc)₃ MOF-5

 $\begin{array}{c} \text{Cr}_3(\text{O})(\text{bdc})_3(\text{F})(\text{OH}_2)_2\\ \text{MIL-101} \end{array}$

Cu₃(btc)₂

Wade, C.; Dinca, M. *Dalton Trans.* **2012**, *41*, 7931. Janiak, C.; Jana, V. *New J. Chem.* **2010**, *34*, 2366.

The Secondary Building Unit

Two- versus Three-Dimensional Frameworks

Cu₂(O₂CR)₄ square planar node

.

 \bigcirc

The Secondary Building Unit

Two- versus Three-Dimensional Frameworks

Cu₂(O₂CR)₄ square planar node

•

 \bigcirc

The Secondary Building Unit

.

Two- versus Three-Dimensional Frameworks

Covalent Organic Frameworks Regular networks of p-block elements

Bond strength and reversibility—how to balance durability and thermodynamic control

.

irreversible linkage = kinetic control

reversible covalent bond

weak bonds = structual fragility

Cote and coworkers take advantage of thermal dehydration of boronic acids

Covalent Organic Frameworks

.

2D Networks Based on Diboronic Acids

Cote, A.; Benin, A. Ockwig, N.; O'Keefe, M.; Matzger, A.; Yaghi, O. Science 2005, 310, 1166.

Covalent Organic Frameworks

2D Networks Based on Diboronic Acids

Hydrazone-Linked Covalent Organic Frameworks

Condensation of hydrazones forms very low density permanently microporous materials

eclipsed COF-42

COF-42

Hydrazone-Linked Covalent Organic Frameworks

Using Tautomerism to Increase Chemical Integrity

Condensation of anilines with a special trialdehyde provides COF's resistant to both strong acid and base

Hydrazone-Linked Covalent Organic Frameworks

Using Tautomerism to Increase Chemical Integrity

Reversible condensation allows thermodynamic control, followed by irreversible tautomerization

Covalent Organic Frameworks Limitations of Crystallinity in COFs

Limited reversibility of covalent bond formation means that most COFs are microcrystalline powders

microcrystalline powder

Single crystal materials are advantageous for x-ray analysis and extended properties

single crystals of a COF

Covalent Organic Frameworks Limitations of Crystallinity in COFs

The dimerization of nitroso compounds is thermally reversible, but not chemically degraded

Beaudoin, D.; Maris, T.; Wuest, J. Nat. Chem. 2013, 5, 830.

Covalent Organic Frameworks Limitations of Crystallinity in COFs

The dimerization of nitroso compounds is thermally reversible, but not chemically degraded

Tetrahedral nitroso monomers generate resilient, covalent single crystals

NPN-3

Reticular Synthesis

Two framework structures are said to be isoreticular if they are based on the same underlying topology
Microporosity and modularity of MOF synthesis allow ready preparation of isoreticular polymers

IRMOF = "isoreticular MOF"

The new strut adds functionality to previous void space without significantly altering the framework.

Yaghi, O.; O'Keefe, M.; Ockwig, N.; Chae, H.; Eddouadi, M.; Kim, J. *Nature.* **2003**, *423*, 705. Eddaoudi, M.; Kim, J.; Rose, N.; Vodak, D.; Wachter, J.; O'Keefe, M.; Yaghi, O. *Science.* **2002**, *295*, 469.

Reticular Synthesis

Systematic variation of pore volume and polarity generates an isoreticular series for evaluation
Adsorption of methane shown to be the most efficient in small, nonpolar pores

Eddaoudi, M.; Kim, J.; Rose, N.; Vodak, D.; Wachter, J.; O'Keefe, M.; Yaghi, O. Science. 2002, 295, 469.

Multivariate Metal Organic Frameworks (MTV-MOF)

Combination of monomers produce regular structures with a disordered functional group distribution

Distribution type obtained by combination of REDOR-NMR and Monte Carlo simulations

Kong, X.; Deng, H.; Yan, F.; Kim, J.; Swisher, J.; Smit, B.; Yaghi, O.; Reimer, J. Science. 2013, 341, 882.

One-Dimensional Secondary Building Units

A variety of linear or rodlike SBUs are known, producing extended 1-dimensional channels

Coordination of the tetradentate ligand 2,5-dihydroxybenzene-1,4-dicarboxylate (H₂DHBDC)

One-Dimensional Secondary Building Units

Potential Applications of Conductive MOFs

However, most COFs and most MOFs with either linear or node SBUs lack intrinsic conductivity

Through-Bond Conductivity in 1D SBUs

Engineering Intrinsic Conductivity using Isoreticular Synthesis

Isomorphous substitution provides the basis for electronic engineering of a MOF.

Through-Bond Conductivity in 1D SBUs

Engineering Intrinsic Conductivity using Isoreticular Synthesis

Mn₂(DSBDC)(DMF)₂•0.2DMF

Design of charge mobility provides materials with both high surface area and conductivity.

Through-Space Charge Mobility in 2D-COFs

Exploiting the Eclipsed Overlapping

Regular 1D stacking of arene groups presents a tantalizing target for charge and exciton transport

Polythiophenes are well-known conducting donor polymers used in organic semiconductors

Reticular synthesis is proposed to engineer semiconductor properties into COFs

Through-Space Charge Mobility in 2D-COFs

Exploiting the Eclipsed Overlapping

Poor crystallinity and irreproducibility are observed with linkers that are insufficiently linear and rigid

TCOF-2: rigid, but not linear

TCOF-3: linear, but not rigid

A linker that is both linear and rigid produces a highly crystalline COF

Through-Space Charge Mobility in 2D-COFs

Oxidation required to generate a p-type semiconductor

The formation of a donor-acceptor complex suggests the possibility of photoconductivity in COFs.

Bulk Heterojunction Organic Solar Cells

Phase Junction Morphology

Can permanent microporosity and long-range order in COFs be leveraged in organic heterojunctions?

Scharber, M.; Sacrifti, N. Prog. Poly. Sci. 2013, in press.

Photocurrent in a Thienothiophene-Containing COF

Phase Junction Morphology

Channel pores of TTCOF are 3 nm, which is less than the 10-20 nm required for efficient charge transfer

Incorporation of donors into backbone and acceptors into pores generates a functional BHJ cell.

Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartshuh, A.; Knochel, P. Bein, T. Angew. Chem. Int. Ed. 2013, 52, 2920.

Donor-Acceptor Covalent Organic Frameworks

Columnar Junctions as Model Systems for Charge Transfer

Laser pulse experiments carried out at 430 nm, where efficient excitation takes place.

Femtosecond transient spectroscopy:

consistent with $\tau cs = 10 \ \mu s$

and ZnPc*+ NDI*- ionization

Time-resolved EPR: confirms ionization and a weak magnetic dipolar interaction between spins confirms charge delocalization

Efficient charge separation and rapid delocalization provide a model for bulk heterojuntion design.

Jin, S. et al. Angew. Chem. Int. Ed. 2013, 52, 2017.

Post-Synthetic Modification

Single crystal to single crystal (SCSC) reactions require high selectivity

Protecting groups are needed when desired functional groups are not conpatible with crystallization

Post-Synthetic Modification

Single crystal to single crystal (SCSC) reactions require high selectivity

Protecting groups are needed when desired functional groups are not conpatible with crystallization

Boc Protection in the IRMOFs

Reticular synthesis allows the preparation of a carbamate N-protected isoreticular MOF

Lun, D.; Waterhouse, G.; Telfer, S. J. Am. Chem. Soc. 2011, 133, 5806.

Exchange of metals allows preparation of MOFs that could not be crystallized directly

Control over metal ion coordination environment is a major objective of materials and inorganic chemistry

MOF-5 was used as a rigid ligand environment to enforce an unfavored tetrahedral coordination of Ni²⁺

Brozek, C.; Dinca, M. Chem. Sci. 2012, 3, 2110.

Control over metal ion coordination environment is a major objective of materials and inorganic chemistry

IR/Vis diffuse reflectance spectroscopy was used to follow the intermediate coordintion states of Ni²⁺

Single crystal to single crystal metal exchange preserves the desired ligand sphere.

Brozek, C.; Dinca, M. Chem. Sci. 2012, 3, 2110.

Control over metal ion coordination environment is a major objective of materials and inorganic chemistry

Exchange of a variety of low valent metals leads to previously unobserved coordination states

Pseudo tetrahedral $M^{2+} = V^{2+}, Cr^{2+}, Mn^{2+}, Fe^{2+}, Co^{2+}$

MOF-5

Pseudo trigonal bipyramidal $M^{3+} = Ti^{3+}, V^{3+}, Cr^{3+}$

Oxidative Catalysis in MOFs Evidence of Redox Cycling of SBU Metal Ions

Gas-phase oxidation of methane carried out in a V⁴⁺-containing MOFs

High turnover and high selectivity for methane oxidation under mild conditions with MOF-48

Single crystal to single crystal oxidation or reduction of MOFs could allow mechanistic insight.

Phan, A.; Czaja, A.; Gandara, F.; Knobler, C.; Yaghi, O. Inorg. Chem. 2011, 50, 7388.

Summary Slide

Metal-Organic Frameworks

Secondary Building Unit

Covalent Organic Frameworks

Reticular Synthesis

Post Synthetic Modification

Applications

The ability to design and analyze crystalline porous materials holds great potential for the customization of solid-state chemistry.