AGING

the mechanisms of getting old and the race for immortality

Steve Knutson March 14, 2023

Dying is a part of living

Dying is a part of living

Dying is a part of living

An age old pursuit

An age old pursuit

An age old pursuit

Antiquity • 200s B. C.

Aristole & Plato Greece

- aging is a disease
- young = hot and wet
- old = cold and dry?

Qin Shi Huang (秦始皇) China

- discussion of death outlawed
- interest in sorcery, early alchemy
- died age 49, mercury poisoning

Elizabethan/Renaissance eras • 1400-1600

Diane de Portiers France

- mistress to King Henry II
- drank gold to preserve looks
- died age 66, gold poisoning

Elizabethan/Renaissance eras • 1400-1600

Pope Innocent VIII Rome, Papal States

- drank blood of young children
- died age 59, unknown cause

Elizabethan/Renaissance eras • 1400-1600

Cornaro's Treatife OF Temperance and Sobriety.

Shewing the right way of preferving

LIFE and HEALTH;

Together with Soundness of the Senfes, Judgment, and Memory, unto extream old Age.

- first proponent of "moderation"
- died age 102

Age of Reason • 1600-1900

• probability of death increases exponentially with age

Age of Reason • 1800s

- what is the evolutionary purpose of aging?
- altruistic programmed death: make room for the next generation?

Alfred Russel Wallace

Age of Reason • 1800s

- what is the evolutionary purpose of aging?
- altruistic programmed death: make room for the next generation?

genes passed on

Alfred Russel Wallace

Age of Reason • 1800s

- cost of death to individuals exceeds benefit to the group
- long-lived individuals would produce more offspring

Alfred Russel Wallace

animals have very different lifespans

mouse

Mus musculus

2-3 years

dog Canis lupus familiaris

10-13 years

human Homo sapiens

~40 years (late 19th c) ~80 years (today)

The aging paradox

bigger animals live longer

The aging paradox

except when they don't

FIGURE 4.—Longevity or AOD as a function of body weight in pounds. For details, see text. Solid symbols represent the database created from websites (see supplemental Table 3). Open symbols are data from the database of Cassidy (http://users.pullman. com/lostriver/longhome.htm). A few dog breeds with extreme values are noted.

The "wear and tear" theory

- body parts and cells "wear out" like machine parts
- continued use + environment insults, outpaces the body's capacity for repairing and replenishing

Alfred Russel Wallace

Replacement "therapy" • 1890 - 1920s

Charles-Édouard Brown-Séquard

Serge Voronoff Сергей Воронов

Leo Leonidas Stanley

Replacement "therapy" • 1890 - 1920s

Serge Voronoff Сергей Воронов

Leo Leonidas Stanley

testosterone

estrogen

progesterone

The aging paradox - extrinsic mortality

Peter Medawar

George C. Williams

J. B. S. Haldane

- few **old** animals exist in wild predation, competition, disease, starvation, etc
- most animals die soon after genes already passed on, long before "aging" occurs
- natural selection is increasingly ineffective with age

The aging paradox - extrinsic mortality

mouse

Mus musculus

2-3 year lifespan

extremely high extrinsic mortality

Brandt's bat

Myotis brandtii

40 year lifespan

extremely low extrinsic mortality

Meanwhile, during the Great Depression

- 1930s life expectancy was 53
- starvation, malnutrition commonplace
- lack of any real scientific data on nutritional impacts on overall health
- assess how and why malnutrition/ starvation was bad for the body

Clive McCay Cornell University

Caloric restriction

Caloric restriction

McCay, C. M., Crowell, M. F., & Maynard, L. A. J. Nutrition, 1935, 10(1), 63-79.

Caloric restriction

- overall "slowing" of the body's processes/breakdown
- ~100 years later, we are still figuring out why calorie restriction extends lifespan

McCay, C. M., Crowell, M. F., & Maynard, L. A. J. Nutrition, 1935, 10(1), 63-79.

resources are finite

The 12 hallmarks of aging

Lopez, Otin, C. et al., Cell, 2023, in press
The 12 hallmarks of aging

RBCs T cells platelets

You are the ship of Theseus

cell type	turnover time			
small intestine epithelium	2-4 days			
stomach	2-9 days			
blood Neutrophils	1-5 days			
white blood cells Eosinophils	2-5 days			
gastrointestinal colon crypt cells	3-4 days			
cervix	6 days			
lungs alveoli	8 days			
tongue taste buds (rat)	10 days			
platelets	10 days			
bone osteoclasts	2 weeks			
intestine Paneth cells	20 days			
skin epidermis cells	10-30 days			
pancreas beta cells (rat)	20-50 days			
blood B cells (mouse)	4-7 weeks			
trachea	1-2 months			
hematopoietic stem cells	2 months			
sperm (male gametes)	2 months			
bone osteoblasts	3 months			
red blood cells	4 months			
liver hepatocyte cells	0.5-1 year			
fat cells	8 years			
cardiomyocytes	0.5-10% per year			
central nervous system	life time			
skeleton	10% per year			

You are the ship of Theseus

cell type	turnover time			
small intestine epithelium	2-4 days			
stomach	2-9 days			
blood Neutrophils	1-5 days			
white blood cells Eosinophils	2-5 days			
gastrointestinal colon crypt cells	3-4 days			
cervix	6 days			
lungs alveoli	8 days			
tongue taste buds (rat)	10 days			
platelets	10 days			
bone osteoclasts	2 weeks			
intestine Paneth cells	20 days			
skin epidermis cells	10-30 days			
pancreas beta cells (rat)	20-50 days			
blood B cells (mouse)	4-7 weeks			
trachea	1-2 months			
hematopoietic stem cells	2 months			
sperm (male gametes)	2 months			
bone osteoblasts	3 months			
red blood cells	4 months			
liver hepatocyte cells	0.5-1 year			
fat cells	8 years			
cardiomyocytes	0.5-10% per year			
central nervous system	life time			
skeleton	10% per year			

Why do stem cells die as we age?

cell divisions are finite

Leonard Hayflick

Why do stem cells die as we age?

cell division is a violent process

- chromosome condensation
- chromatid alignment
- mechanical separation

Telomere shortening

Telomere shortening

Sharpless, N. E. et al., Nat. Rev. Mol. Cell Biol., 2007, 8, 707

Telomere lengthening

Chromosome Telomerase NHP2 **Telomere repeats** TERT NOP10 GAR TTAGGGTTAGGGTTAGGGTTAGGG 3' ∞ Dyskerin AATCCCAATCCC AAUCCC -5' TERC 3' RNA matching motif 5' T and B cells skin cells egg/embryos sperm

Telomere lengthening

Chromosome

Carol Greider

Elizabeth Blackburn

Jack Szostak

Telomere lengthening = not always good

Stem cell damage and dysfunction

- DNA damage accumulation throughout life causes aging (wear and tear?)
- again, this is "invisible" to natural selection
- aging evolves because selection cannot eliminate "bad" mutations that only occur late in life

- smoker
- ~20 drinks per week
- ~30 h sun exposure per week (job outside)

- non-smoker
- <10 drinks per week
- ~5 h sun exposure per week

Bahman, G. et al., Plastic and Recon. Surg., 2009, 123, 1321-1331

"truck driver facial syndrome"

Endogenous DNA adducts											
DNA lesion	DSB	Cytosine deamination	Cyclopurine adducts	Depyrimidination	8-oxoG	Malondialdehyde adducts	Alkylation adducts	Depurination	SSB		
Frequency per cell per day	10 ¹	10 ²	10 ²	10 ²	10 ³	10 ³	10 ³	10 ⁴	10 ⁴		
		DNA a	dducts caused	by environmental	exposures						
Genotoxin	Sunlight	Background radiation			lonizing radiation therapy		Oxaliplatin cancer therapy	-			
Lesion	Photodimers	Damaged bases	SSB	DSB	Damaged bases	SSB	Intra- and interstrand crosslinks	_			
Frequency per cell per day	10 ² in skin cells only	10	2–5	0.25	10 ³	10 ³	10 ³	_			

Unrepaired DNA damage accelerates aging

Unrepaired DNA damage accelerates aging

Brosh. R. M. et al., Nat. Rev. Cancer, 2013, 13, 542-558

Helicases are critical for damage repair

Werner Syndrome defective RecQ helicase

— key helicase modes of action —

Helicases are critical for damage repair

wildtype mouse (2 mo old)

XPR helicase double KO (2 mo old)

— key helicase modes of action —

individuals with mutant polymerase aquire massive amounts of mutations throughout lifetime

almost no correlation between mutational rate and lifespan and overall aging phenotype

Epigenetic dysregulation

Chronological age

Cavalli et al., Nature, 2019, 571, 489-499

David Sinclair

inducible changes to the epigenome (ICE)

Yang. J. et al., Cell, 2023, 186, 305-326

2 4 6 8 10 12 Post-treatment (mo.)

3m0. m0.

0-

0

0

ICE

David Sinclair

The current best aging model

The current best aging model

- DNA, organelle, and cell damage throughout life causes aging
- repair mechanisms cannot fully keep up
- net degeneration of cells/tissue/body

antagonistic pleiotropy

- genes that beneficial early in life become detrimental later and **cause aging**
- DNA repair good, then bad
- net degeneration and loss of information

Cynthia Kenyon

Caenorhabditis elegans (C. elegans)

lifespan ~ 2 weeks

daf-2 mutants lived 2X as long

Daf2 is the insulin receptor

Meanwhile, on Easter Island

Rapamycin inhibits insulin signaling

Rapamycin inhibits insulin signaling

Rapamycin inhibits insulin signaling

mTOR is the growth signaling hub

Low dose rapamycin extends lifespan in mice

Low dose rapamycin extends lifespan in mice

Dai, Z. et al., Nat. Rev. Genet., 2020, 21, 737-753.

Dai, Z. et al., Nat. Rev. Genet., 2020, 21, 737-753.

Shinya Yamanaka

what unique genes/proteins are expressed in stem cells?

only prior existing stem cell source:

human embryos

reprogram normal cells?

OSK reverts cells back to a "stemlike" state

Sharpless, N. E. et al., Nat. Rev. Mol. Cell Biol., 2007, 8, 707

OSK reverts cells back to a "stemlike" state

OSK reverts cells back to a "stemlike" state

Sharpless, N. E. et al., Nat. Rev. Mol. Cell Biol., 2007, 8, 707

Stem cell therapies

Autologous transplantation

in vivo epigenetic reprogramming

in vivo epigenetic reprogramming

David Sinclair

in vivo epigenetic reprogramming

3 mo old

3 mo old

David Sinclair

Yang. J. et al., Cell, 2023, 186, 305-326

Living your best **supercentenarian** life

Sister Lucille Randon Alés, France born Feb 11, 1904 died Jan 17, 2023 age 118

Johanna Mazibuko Jouberton, South Africa born May 11, 1894 died Mar 08, 2023 age 128

Living your best **supercentenarian** life

stem cell therapy

pharmaceuticals

epigenetic reprogramming

metabolism optimization

hormone therapy

blood supplements
The Dog Aging Project

- dozens of trials to test different interventions, doses, timing, etc
- you can volunteer your dog
- results ongoing over next few years/decades

Thank you

Thank you

