

Steve Knutson December 6, 2024

ONICS

The Human Atlas

The Human Genome Project

- first map of human genome (92%)
- 15 years, 20 research institutions
- \$2.7 billion

April 14, 2003

"It changed the way we thought biology could be done."

1990s

The technology did not exist

2005

The Sequence of 5s Ribosomal Ribonucleic Acid

G. G. BROWNLEE, F. SANGER AND B. G. BARRELL

Journal of Molecular Biology 34, no. 3 (1968): 379-412.

First generation DNA sequencing

as above for 2 hr at 37° C. These digests were analysed by ionophoresis on long sheets (85 cm) of DEAE-paper using the pH 1.9 system. Most of the end-products (see Table 1) could be tentatively identified from their position relative to the products of marker ribonuclease digests of 5 s RNA which were always run in parallel (Fig. 2). The bands were then eluted and their compositions determined by alkaline hydrolysis. This distinguished between products having similar mobilities on the DEAE-pH 1.9 system. Some products occupied positions which did not correspond to bands in the marker digest—for example (CU₂) and (C₂U) which were generated by ribonuclease T₁ digests of some partial

sequences are identified in Table 1.

(d) Partial methylation with dimethyl sulphate

In each experiment 5 s RNA containing 1 to 10 μ c ³²P was used. Non-radioactive RNA was added to give a total of about 20 μ g RNA. It was dissolved in 80 μ l. 5% sodium acetate adjusted to pH 6.8. 2 μ l. dimethyl sulphate were added and the mixture incubated at room temperature with occasional shaking for 20 min. 100 μ l. water and 20 μ l. 20%

T_1	Α	
CCCAUG	G-G-G-G-U G-U A-U G	UGUGGGGUCUCCCCAUG
CCCAUG	G-G-G-G-U A-U G	UGGGGUCUCCCCAUG
CCCAUG	G-G-G-G-U A-G-U G-U A-U G	UAGUGUGGGGUCUCCCCAUG

Frederick Sanger

Journal of Molecular Biology 34, no. 3 (1968): 379-412.

A new method for sequencing DNA

(DNA chemistry/dimethyl sulfate cleavage/hydrazine/piperidine)

ALLAN M. MAXAM AND WALTER GILBERT

dimethylsulfate

Walter Gilbert

Proc. Natl. Acad. Sci., 1977, 74(2):560-4.

A new method for sequencing DNA

(DNA chemistry/dimethyl sulfate cleavage/hydrazine/piperidine)

ALLAN M. MAXAM AND WALTER GILBERT

hot piperidine

Walter Gilbert

Proc. Natl. Acad. Sci., 1977, 74(2):560-4.

A new method for sequencing DNA

(DNA chemistry/dimethyl sulfate cleavage/hydrazine/piperidine)

ALLAN M. MAXAM AND WALTER GILBERT

hot piperidine

Walter Gilbert

Proc. Natl. Acad. Sci., 1977, 74(2):560-4.

Walter Gilbert

• antibacterial, inhibited DNA synthesis

2,3-dideoxyadenosine

Synthesis of Some Nucleotides Derived from 3'-Deoxythymidine*

Alan F. Russell[†] and J. G. Moffatt

2,3-dideoxyadenosine triphosphate

Frederick Sanger

J. Am. Chem. Soc., 1966, 88(7):1549-53.

Synthesis of Some Nucleotides Derived from 3'-Deoxythymidine*

Alan F. Russell[†] and J. G. Moffatt

2,3-dideoxyadenosine triphosphate

Frederick Sanger

J. Am. Chem. Soc., 1966, 88(7):1549-53.

Synthesis of Some Nucleotides Derived from 3'-Deoxythymidine*

Alan F. Russell[†] and J. G. Moffatt

J. Am. Chem. Soc., 1966, 88(7):1549-53.

2,3-dideoxyadenosine triphosphate

2,3-dideoxythymidine triphosphate

2,3-dideoxyadenosine triphosphate

2,3-dideoxycytidine triphosphate

2,3-dideoxyguanosine triphosphate

Proc. Natl. Acad. Sci., 1977, 74(12):5463-7.

Frederick Sanger

Alan Coulson

carbonate at pH 8.4. The preparation of ddGTP and ddCTP has not been described previously; however we applied the same method as that used for ddATP and obtained solutions having the requisite terminating activities. The yields were very low and this can hardly be regarded as adequate chemical characterization. However, there can be little doubt that the activity was due to the dideoxy derivatives.

2,3-dideoxycytidine triphosphate

2,3-dideoxyguanosine triphosphate

Proc. Natl. Acad. Sci., 1977, 74(12):5463-7.

Frederick Sanger

Alan Coulson

- 5' TCGCTCCATGCTTACCTCGA
- 5' TCGCTCCATGCTTA
- 5' TCGCTCCA

Proc. Natl. Acad. Sci., 1977, 74(12):5463-7.

5' TCGCTCCATGCTTACCTCGATCCG 3'

3' AGCGAGGTACGAATGGAGCTAGGC 5'

Escherichia virus $\Phi X174$

 Φ X174 genome ~5500 nt

Proc. Natl. Acad. Sci., 1977, 74(12):5463-7.

Proc. Natl. Acad. Sci., 1977, 74(12):5463-7.

Proc. Natl. Acad. Sci., 1977, 74(12):5463-7.

Leroy Hood

radioactive primer

+ 80 to about +160 is the "green zone"

Leroy Hood

fluorescent primer

+ 80 to about +160 is the "green zone"

Leroy Hood

fluorescent primer

+ 80 to about +160 is the "green zone"

fluorescent primer

Leroy Hood

NBD

+ 80 to about +160 is the "green zone"

"On LSD, I could sit on a DNA molecule and watch the polymers pass by..."

The Deoxyribonucleic Acid Trip

Kary Mullis

"What if I had not taken LSD ever; would I have still invented PCR? I don't know. I doubt it. I seriously doubt it."

Kary Mullis

"I was "functionally sober", but in a different state of mind entirely."

Kary Mullis

"I was "functionally sober", but in a different state of mind entirely."

Kary Mullis

"I was "functionally sober", but in a different state of mind entirely."

Enzymatic Amplification of B-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia

Science, 1985, 230(4732), 1350-4.

Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase

RANDALL K. SAIKI, DAVID H. GELFAND, SUSANNE STOFFEL, STEPHEN J. SCHARF, RUSSELL HIGUCHI, GLENN T. HORN, KARY B. MULLIS,* HENRY A. ERLICH

A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction. The enzyme, isolated from Thermus aquaticus, greatly simplifies the procedure and, by enabling the amplification reaction to be performed at higher temperatures, significantly improves the specificity, yield, sensitivity, and length of products that can be amplified. Single-copy genomic sequences were amplified by a factor of more than 10 million with very high specificity, and DNA segments up to 2000 base pairs were readily amplified. In addition, the method was used to amplify and detect a target DNA molecule present only once in a sample of 105 cells.

Science, 1988, 239(4839), 487-491.

The Human Genome Project

LIFE SCIENCES DIVISION

LOS ALAMOS NATIONAL LABORATORY

NATURE VOL. 326 2 APRIL 1987

Human genome sequencing plan wins unanimous approval in US

Gaithersburg, Maryland

THE project to map and sequence the human genome is now a big step nearer reality. At a meeting here last week, the Health and Environmental Research Advisory Committee (HERAC) of the Department of Energy (DoE) collectively

fully fledged mapping and sequencing project. Few in Congress will be enthusiastic about a new initiative that will cost more than \$1,000 million, although this is less upsetting than the estimate of \$3,000 million initially quoted for the project (see Nature 321, 371; 1986).

NEWS

National Human Genome **Research Institute**

The Human Genome Project

Original reference human genome sequence
Whole genome shotgun sequencing

ATTA AGEA CTGA TAAT CCAG TTCC GTEA AAGT GGTA CTGA. AGAG 0000 TAGE TEAC GTEA CTAA TACC ATCC AGTO ATAT CAGT

minimal set of BACs needed to sequence

minimal set of BACs needed to sequence

minimal set of BACs needed to sequence

The "You" You Are

1994 - Basic Mapping of Chromosome Architecture

A Comprehensive Human Linkage Map with Centimorgan Density

Science, 1994, 265, 2049-2054.

1994 - Basic Mapping of Chromosome Architecture

A Comprehensive Human Linkage Map with Centimorgan Density

Science, 1994, 265, 2049-2054.

22

'It's a G': the one-billionth nucleotide

NATURE VOL 402 25 NOVEMBER 1999

Nature, 1999, 402, 489-495

The DNA sequence of human chromosome 21

Nature, 2000, 405, 311-319

'It's a G': the one-billionth nucleotide

NATURE VOL 402 25 NOVEMBER 1999

Nature, 1999, 402, 489-495

The DNA sequence of human chromosome 21

Nature, 2000, 405, 311–319

Surprise #1 - We don't have that many "genes"

Surprise #1 - We don't have that many "genes"

genome size

basepairs

genome complexity

Surprise #1 - We don't have that many "genes"

Surprise #2 - It's mostly junk?

Surprise #2 - It's mostly junk?

Surprise #2 - It's mostly junk?

Surprise #3 - It's mostly transposons?

Surprise #3 - It's mostly transposons?

Surprise #3 - It's mostly transposons?

- **a** Insertional mutagenesis
- **b** Creating and repairing DNA double-strand breaks

e Insertion-mediated deletions

g Transduction

2005 and Onwards - Genome Sequencing Accelerates

solid-phase bridge amplification

Shankar Balasubramanian

David Klenerman

solid-phase bridge amplification

Shankar Balasubramanian

David Klenerman

Top: CATCGT Bottom: CCCCCC

More Genomes Sequenced = Genome-Wide Association Studies (GWAS)

d Imputation								
		SNP1	SNP2	SNP3	SNP4	SNP5	SNP6	
	Person 1	G	Т	G	А	А	Т	
	Person 2	G	Т	С	С	Т	С	
	Person 3	С	А	G	С	А	С	
	Person 4	С	А	С	С	Т	С	

Nat Rev Genetics, 2021, 1, 59.

More Genomes Sequenced = Genome-Wide Association Studies (GWAS)

Trait/Disease vs Normal population

Nat Rev Genetics, 2021, 1, 59.

Nature genetics, 2013, 45(12), 1452-1458.

Nature genetics, 2013, 45(12), 1452-1458.

Chromosome

Nature genetics, 2013, 45(12), 1452-1458.

Nature genetics, 2013, 45(12), 1452-1458.

Chromosome
Hot-spot Mutations in Known Cancer Drivers

PLoS genetics, 2013, 9(3), e1003212

BRCA1

Position (kb), 5.37

BRCA2

Position (kb), b.37

Gene Mutations that Correlate with Coronary Artery Disease

New England Journal of Medicine, 2007, 357(5), 443-453.

RNA-seq

Surprise #1 - Most of the Genome is Transcribed

Nature Reviews Genetics, 2024, 25(3), 211-232

Non-Coding RNAs

Non-Coding RNAs are bioactive

Long Non-Coding RNAs

Nature Reviews Genetics, 2024, 25(3), 211-232

Long Non-Coding RNAs

Nature Reviews Genetics, 2024, 25(3), 211-232

Long Non-Coding RNAs

a Interaction with DNA

AAACAATACAG

Surprise #2 - RNA is Extensively "Edited" After Transcription

basepairing

	U	С	A	G	
		UCU]	UAU]Tur	UGU	U
	UUC	UCC UCA UCG	UAC		С
U	UUA		UAA Jerop	UGA STOP	A
	UUG		UAG	UGG Trp	G
	cuu ₁	CCU 7	CAU	CGU]	U
~	CUC	CCC Pro		CGC	С
С	CUA		CAA	CGA Arg	A
	CUG	CCG	CAG	CGG -	G
	AUU 7	ACU 7	AAU]	AGU]	U
A	AUC Ile	ACC		AGC Ser	С
	AUA	ACA	AAA	AGA	A
	AUG Met (start)	ACG	AAG	AGG	G
G	GUU GUC GUA	GCU - GCC GCA	GAU 7.	GGU 7	U
			GAC ASP	GGC	C
			GAA John	GGA	A
	GUG	GCG _	GAG	GGG	G

Second base in codon

First base in codon

adenosine : uracil basepairing

inosine : cytidine basepairing

RNA-editing drugs advance into clinical trials

By Asher Mullard

ADAR-based editors that can change the mRNA code offer new opportunities in both rare genetic diseases and common complex ones.

igonucleotide-based drugs already come in many flavours. The newest of these now aims to edit mRNA one base at a time, by harnessing endogenous enzymes called adenosine deaminases acting on RNA (ADAR).

Wave Life Sciences advanced the first ADAR-based RNA editor into healthy volunteers in 2023 for the hereditary disorder alpha-1 antitrypsin deficiency (AATD). The company is set to start dosing patients with the disease shortly. A growing list of biotechs are setting their sights on similar RNA-editing

Drug	Sponsor	Properties	Lead indication	Status
WVE-006	Wave Life Sciences/GSK	SERPINA1/AAT mRNA editor	Alpha-1 antitrypsin deficiency	Phase I
AX-1412	ProQR	B4GALT1 mRNA editor	Cardiovascular disease	To start late 2024/early 2025
AX-0810	ProQR	NTCP mRNA editor	Cholestatic diseases	To start late 2024/early 2025
KRRO-110	Korro Bio	SERPINA1/AAT mRNA editor	Alpha-1 antitrypsin deficiency	IND in 2024
NA	ADARx	SERPINA1/AAT mRNA editor	Alpha-1 antitrypsin deficiency	Preclinical
NA	AIRNA	SERPINA1/AAT mRNA editor	Alpha-1 antitrypsin deficiency	Preclinical
NA	Vico Therapeutics	MECP2-R255X mRNA editor	Rett syndrome	Preclinical
NA	EdiGene	Undisclosed	Undisclosed	Undisclosed
NA	ShapeTx	Undisclosed	Undisclosed	Undisclosed

Table 1 | ADAR-based editors in and approaching the clinic

Site-directed A-to-I RNA Editing

KORRO[®]

W LIFE SCIENCES

N⁴-methyladenosine (m^aA)

Nº, 2'-O-dimethyladenosine (m⁶Am)

Pseudouridine $\langle \Psi \rangle$

N⁰-acetyladenosine (ac⁶A)

0

Uridine (U)

tRNA with pseudouridine

Pseudouridine (Ψ)

M⁴-methyladenosine (m⁴A)

RNA export, enhanced stability, increased translation

Pseudouridine (Ψ)

M⁸-methyladenosine (m⁴A)

RNA encoding virus protein piece

Pseudouridine (Ψ)

M⁶-methyladenosine (m⁶A) enhanced mRNA stability, increased protein production, prevents adverse immune responses

()

5-methylcytidine (m²C)

Nature Reviews Genetics, 2024, 21, 630-644

Nature Reviews Genetics, 2024, 21, 630-644

Within-gene correlation RPL12 SORD r = 0.074r = 0.919.5 ¬ 9.2 -Protein log₁₀ (iBAQ) Protein log₁₀ (iBAQ) Brain Brain 8.6 7.5 -0.5 1.5 0.5 2.5 mRNA log₁₀ (FPKM) mRNA log₁₀ (FPKM)

Nature Reviews Genetics, 2024, 21, 630-644

Within-gene correlation RPL12 SORD r = 0.074r = 0.919.5 ¬ • 9.2 -Protein log₁₀ (iBAQ) Protein log₁₀ (iBAQ) Brain Brain 8.6 – 7.5 🗌 🛛 0.5 1.5 0.5 2.5 mRNA log₁₀ (FPKM) mRNA log₁₀ (FPKM)

b Autoregulation

c Degradation of orphan subunits

MultiOMICs

MultiOMICs

The Cancer Genome Atlas

- HER2 amplification landscape in breast cancer
- KRAS and NRAS mutations
- microRNAs and long non-coding RNAs (IncRNAs) across cancers
- BRAF V600E mutations in melanoma and thyroid cancers
- *MGMT* promoter methylation in glioblastoma
- IDH1/2 mutations in low-grade gliomas
- oncometabolites like 2-hydroxyglutarate (2HG) in IDH-mutant gliomas

Temporal dynamics of the multi-omic response to endurance exercise training

Nature, 2024

MultiOMICs

at eco cat o s

A multiomic atlas of the aging hippocampus reveals molecular changes in response to environmental enrichment 6

Nat. Comms., 2024

Nonlinear dynamics of multi-omics profiles during human aging

Nature Aging, 2024

Host-microbe multiomic profiling reveals age-dependent immune dysregulation associated with **COVID-19 immunopathology**

D

Science, 2024

Multi-omic applications for understanding and enhancing tropical fruit flavour

Plant Molecular Biology, 2024 ÍD

0

Unfolding the path to nanopore protein sequencing

Nanopore sequencing s our understanding of pr

Not if but when nanopo sequencing meets single-cempioneonics

0

0

Multi-pass, single-molecule nanopore reading of long protein strands

Nature, 2024

Third-generation sequencing

The OMICs outlook

Technological Gaps

- some, but not many remain
 - top needs:
 - direct protein sequencing
 - glycomics/lipidomics
 - accurate metabolite ID

Data Analysis

we have "too much" data

Modelling of each modality separately

Thank you

Thank you