

OPTOGENETICS

control Nature with light

Steve Knutson December 12, 2023

Francis Crick, 1977

"...the major challenge facing neuroscience is the need to **control one type of cell in the brain** while leaving others unaltered. Electrical stimuli cannot meet this challenge - they activate all circuitry without distinguishing between different cell types, and their signals cannot turn off neurons with precision. Drugs are not specific enough either, and they are much slower than the natural operating speed of the brain....

Light activation may be the only answer."

2017

Yale School of Medicine

where is **violence** located in the brain?

U.S. Department of Defense

nature

Method of the Year (2010)

Biggest Breakthrough (2013)

Optogenetics

Year

Optogenetics

HEALTH • THE BRAIN

THE NEW YORKER

Noninvasive Brain Control Is Real — and That's Good

LIGHTING THE BRAIN

Erasing Bad Memories May Soon Be Possible

The NEW ENGLAND JOURNAL of MEDICINE

Optogenetics — The Might of Light

The New York Times

Brain Control in a Flash of Light

Science

Efforts to control monkey brains get a boost

Optogenetics

Sources of light/energy on Earth

Sources of light/energy on Earth

The ability to "sense" visible light evolved everywhere

Organic photochemistry

•

•

•

I G-protei

rhodopsin

G-protein coupled receptor

~500 MYA

bacteriorhodopsin

ion channel

G-protei

rhodopsin

G-protein coupled receptor

~500 MYA

bacteriorhodopsin

ion channel

G-protei

rhodopsin

G-protein coupled receptor

~500 MYA

bacteriorhodopsin

ion channel

bacteriorhodopsin

The channelrhodopsin family

Phototaxis

I

Phototaxis

Phototropism

Comparing a D inco My Examp Al Rights bearing

Phototropism

indole acetic acid (IAA)

Fundamental principles in neurology

Electrochemical gradients in neuronal conduction

Electrochemical gradients in neuronal conduction

Electrochemical gradients in neuronal conduction

Goal: implement light-activated ion channels to activate neurons

Goal: implement light-activated ion channels to activate neurons

Peter Hegemann

Georg Nagel

Chlamydomonas reinhardtii (green algae)

channelrhodopsin (algae)

bacteriorhodopsin

Peter Hegemann

Georg Nagel

Chlamydomonas reinhardtii (green algae)

channelrhodopsin RNA

Xenopus lavis oocyte (frog egg)

Peter Hegemann

Georg Nagel

Single Ca_v1.2 channel currents

200 ms

A. S. S. S. S. S. S. S.

2 pA

Peter Hegemann

Georg Nagel

Channelrhodopsin insertion into neurons

Karl Deisseroth

Georg Nagel

virus containing channelrhodopsin DNA

Nature Neuroscience, 2005, 8(9), 1263-1268.

rat hippocampal neurons

ChR expression

pulsed activation

ChR+ neurons behave just like regular neurons

Karl Deisseroth

Georg Nagel

400 Membrane resistance (MOhm) 300 200 100 0 C'hR2*

Nature Neuroscience, 2005, 8(9), 1263-1268.

Repeated optical control of neuroactivation

Georg Nagel

Nature Neuroscience, **2005**, 8(9), 1263-1268.

Repeated optical control of neuroactivation

Karl Deisseroth

Georg Nagel

Nature Neuroscience, 2005, 8(9), 1263-1268.

30 Hz

Optical control over synaptic transmission

Karl Deisseroth

Georg Nagel

Nature Neuroscience, 2005, 8(9), 1263-1268.

In vivo optogenetics

Susanna Lima

Gero Miessenböck

Cell **Remote Control of Behavior** through Genetically Targeted **Photostimulation of Neurons**

Susana Q. Lima and Gero Miesenböck* Department of Cell Biology Yale University School of Medicine 333 Cedar Street New Haven, Connecticut 06520

Drosophila melanogaster (fruit fly)

In vivo optogenetics

Susanna Lima

Gero Miessenböck

•

Susanna Lima

Gero Miessenböck

Susanna Lima

Gero Miessenböck

Olfaction

Mapping and controlling the *flight* response

Susanna Lima

Gero Miessenböck

Cell, **2005**, *121*(1), 141-152.

decapitated flight jump

Mapping **reflex arcs** with optogenetics

Karl Deisseroth

Luis de Lecea

(A) PFC NAC --> Reward-related projections --> Arousal-related projections

Trends in Neurosciences

Karl Deisseroth

Luis de Lecea

virus containing channelrhodopsin DNA

Karl Deisseroth

Luis de Lecea

virus containing

Karl Deisseroth

Luis de Lecea

J Neuroscience, **2008** 27(52), 14231-14238.

Karl Deisseroth

Viviana Gradinaru

Lateral corticospinal tract

J Neuroscience, **2008** 27(52), 14231-14238.

Karl Deisseroth

Viviana Gradinaru

virus containing channelrhodopsin DNA

J Neuroscience, 2008 27(52), 14231-14238.

Cerebellum

Medulla

Karl Deisseroth

Viviana Gradinaru

J Neuroscience, 2008 27(52), 14231-14238.

Cerebellum

Medulla

Karl Deisseroth

Viviana Gradinaru

Jaw, lips, tongue

right motor cortex = left body movement

J Neuroscience, **2008** 27(52), 14231-14238.

Daesoo Kim

Sae-Geun Park^{1,3}

Yong-Cheol Jeong^{1,3}

Dae-Gun Kim^{1,2,3}

Phill-Seung Lee^{2*}

pre-optic area (POA)

ventral periaqueductal gray region (vPAG)

Nature Neuroscience, **2018**, 21(3), 364-372.

Nature Neuroscience, 2018, 21(3), 364-372.

ventral periaqueductal gray region (vPAG)

Nature Neuroscience, 2018, 21(3), 364-372.

ventral periaqueductal gray region (vPAG)

Nature Neuroscience, **2018**, 21(3), 364-372.

Nature Neuroscience, 2018, 21(3), 364-372.

Object <u>fascination</u> induced with light

Object <u>fascination</u> induced with light

Nature Neuroscience, 2018, 21(3), 364-372.

Controlling mouse movement with optogenetic object fascination

Controlling mouse movement with optogenetic object fascination

Automated 3D-maze navigation by using object-chasing behavior in mice

Guiding without light stimulation

Guiding with light stimulation

Mapping/tagging memories with optogenetics

what is memory? where and how is it stored?

Searching for the **engram**

Karl Lashley

tissue amount mattered (>10-15% mass)

Karl Lashley

tissue amount mattered (>10-15% mass)

learning/memory is distributed across the brain

equipotentiality different regions can compensate for damage

A memory is a collection of neurons

A memory is a collection of neurons

Neurons with relatively higher excitability at the time of training Neurons with relatively higher excitability are preferentially allocated to an engram

A memory is a collection of neurons

Event 2

Event 2

Neurons allocated to Event 1 now less excitable; Event 2 allocated to a distinct population

Mapping/tagging memories with optogenetics

inducible ChR expression

Neurons with relatively higher excitability at the time of training

only neurons active during an event will express channelrhodopsin

ChR expression

Neurons with relatively higher excitability are preferentially allocated to an engram

Science, **2020**, 367(6473), eaaw4325.

Mapping/tagging memories with optogenetics

inducible ChR expression

Neurons with relatively higher excitability at the time of training

only neurons active during an event will express channelrhodopsin

absence of an external sensory cue

Memory manipulation worklfow

fear conditioning

the bad memory: audible cue followed by shock

now blue-light activatable even in absence of cue

Science, **2020**, 367(6473), eaaw4325.

fear conditioning

the bad memory:

now blue-light activatable even in absence of cue

Science, **2020**, 367(6473), eaaw4325.

Memory manipulation worklfow

blue-light activated memory recall

Optogenetic inception of **false** memories

Christine Denny

•

Optogenetic inception of **false** memories

memory-encoding neurons

memory-retrieving neurons

Christine Denny

Memory Hackers | Manipulating Memories with **Optogenetics**

The Memory Hunter

The pioneering research of neuroscientist Christine Ann Denny '05, MS'06, could have life-altering implications for people suffering with everything from Alzheimer's disease to post-traumatic stress disorder.

Optogenetic inception of **false** memories

Christine Denny

Next-generation optogenetic tools

Next-generation optogenetic tools

Light-oxygen-voltage (LOV) domains

LOV-based optogenetic switches

ilid

Photoreceptor	<u>AsLOV2</u> –SsrA
Binding partner	<u>SspB</u>
Cofactor	FMN
Source organism	Avena sativa
Mode of action	heterodimerization
Excitation wavelength	450 nm
Reversion wavelength	dark
Excitation time	seconds
Reversion time	seconds to minutes (variants available)

Proc. Natl. Acad. Sci., 2017, 112(1), 112-117.

ilid

Photoreceptor	<u>AsLOV2</u> –SsrA
Binding partner	<u>SspB</u>
Cofactor	FMN
Source organism	Avena sativa
Mode of action	heterodimerization
Excitation wavelength	450 nm
Reversion wavelength	dark
Excitation time	seconds
Reversion time	seconds to minutes (variants available)

Proc. Natl. Acad. Sci., 2017, 112(1), 112-117.

ilid

Photoreceptor	<u>AsLOV2</u> –SsrA
Binding partner	<u>SspB</u>
Cofactor	FMN
Source organism	Avena sativa
Mode of action	heterodimerization
Excitation wavelength	450 nm
Reversion wavelength	dark
Excitation time	seconds
Reversion time	seconds to minutes (variants available)

optical control over microtubule/cytoskeleton

Current Biology, 2022, 32(21), 4660-4674.

ilid

Photoreceptor	<u>AsLOV2</u> –SsrA
Binding partner	<u>SspB</u>
Cofactor	FMN
Source organism	Avena sativa
Mode of action	heterodimerization
Excitation wavelength	450 nm
Reversion wavelength	dark
Excitation time	seconds
Reversion time	seconds to minutes (variants available)

Current Biology, **2022**, *32*(21), 4660-4674.

ilid

Photoreceptor	<u>AsLOV2</u> –SsrA
Binding partner	<u>SspB</u>
Cofactor	FMN
Source organism	Avena sativa
Mode of action	heterodimerization
Excitation wavelength	450 nm
Reversion wavelength	dark
Excitation time	seconds
Reversion time	seconds to minutes (variants available)

Light-activated phase separation

CRY2olig

Photoreceptor	CRY2olig
Binding partner	/
Cofactor	FAD
Source organism	Arabidopsis thaliana
Mode of action	homooligomerization
Excitation wavelength	450 nm
Reversion wavelength	dark
Excitation time	seconds
Reversion time	minutes

UV receptors Cyanobacteriochromes BLUF domains LOV domains Cryptochromes Fluorescent proteins Cobalamin-binding domains Phytochromes

UV receptors Cyanobacteriochromes BLUF domains LOV domains Cryptochromes Fluorescent proteins Cobalamin-binding domains Phytochromes

UV receptors Cyanobacteriochromes BLUF domains LOV domains Cryptochromes Fluorescent proteins Cobalamin-binding domains Phytochromes

biliverdin

heme

PhyA/FHY1 & PhyA/FHL

Photoreceptor	PhyA
Binding partner	FHY1 or FHL
Cofactor	PCB
Source organism	Arabidopsis thaliana
Mode of action	heterodimerization
Excitation wavelength	660 nm
Reversion wavelength	740 nm
Excitation time	? Add information
Reversion time	? Add information

DrBphP

Photoreceptor	DrBphP
Binding partner	/
Cofactor	Biliverdin
Source organism	Deinococcus radiodurans
Mode of action	homodimerization, dissociation
Excitation wavelength	660 nm
Reversion wavelength	780 nm, dark
Excitation time	? Add information
Reversion time	? Add information

Choose your **fighter**

I would like to use an optogenetic switch...

...that I can fuse to my proteins of interest. ...with a predefined function.

Mode of switch action:

- □ Homodimerization
- □ Heterodimerization
- □ Oligomerization (clustering)
- Dissociation
- □ Shielding/caging
- Photocleavage

of the proteins of interest.

OptoBase

Display only the switches that can be actively reversed from excited to ground state.

□ My optogenetic application requires deep tissue penetration of light.

Display only the switches that have been previously tested in **any of** the following host cell lines / organisms:

Select the hosts

- Photoreceptor
- Binding partner
- Cofactor
- Source organism
- Mode of action
- Excitation wavelength
- **Reversion** wavelength
- Excitation time
- **Reversion time**

Choose your **fighter**

MxCBD
1
AdoCbl, MetCbl or CNCbl
Myxococcus xanthus
homotetramerization, dissociation
545 nm
dark
? Add information
? Add information

Choose your **fighter**

OptoBase

Choose your **fighter**

DNA binding/gene activation

Choose your **fighter**

DNA binding/gene activation

Choose your **fighter**

Nature neuroscience, **2021**, *24*(7), 1035-1045.

AAV1.CaMKII.ChR2.mCherry

5 min

Nature neuroscience, **2021**, *24*(7), 1035-1045.

Nature neuroscience, **2021**, *24*(7), 1035-1045.

Nature neuroscience, **2021**, 24(7), 1035-1045.

asynchronous

brain mapping/functional wiring

understanding/manipulating memory

basic cell biology mechanisms

understanding/manipulating memory

basic cell biology mechanisms

tissue and embryonic development

basic cell biology mechanisms

tissue and embryonic development

Optogenetic road to the clinic

Optogenetic road to the clinic

Thank you

Thank you