Functionalization of C–O Bonds

Stefan McCarver

MacMillan Lab Group Meeting

November 23rd, 2016

Functionalization of C–O Bonds

Lignin

- Second most abundant biopolymer
- About 30% of organic carbon on earth
- Byproduct of paper production
- Potential fine chemical feedstock

startup company (founded 2014) based on one step removal of lignin from biological feedstocks and upgrading to valuable commodity chemicals

Nicolau, K. C.; Vassilikogiannakis, W.; Mägerlein, W.; Kranich, R. Angew. Chem. Int. Ed. 2001, 40, 2482

Activation of C–O Bonds is Challenging

carbon-oxygen bonds are much stronger than the corresponding carbon-halide bonds

Functionalization of C–O Bonds

- Radical alcohol deoxygenation
 - Thiocarbonyl methods
 - Phosphite activation
 - Thiol catalysis
 - Titanium-mediated deoxygenation
- Transition metal C–O bond insertion
 - Aryl methyl ether electrophiles
 - Ru directed C–O bond insertion
 - Phenol cross-coupling

Η

.0、_X

Reduction of C–O Bonds

Reduction of C–O Bonds

Herrmann, J. F.; König, B. Eur. J. Org. Chem. 2013, 7017

General Functionalization Methods are Not Yet Available

The Barton-McCombie Alcohol Deoxygenation

conversion from C=S to C=O provides thermodynamic driving force

Barton, D. H. R.; McCombie, S. W. Perkin Trans. I. 1975, 1574

Catalytic Barton-McCombie Deoxygenation

Tin-Free C–O Bond Reductions

solvent	yield	
DMSO	0%	
MeCN	0%	
NMP	43%	
DMF	44%	

Lam, K.; Marko[´], I. E. Org. Lett. 2011, 13, 406

fragmentation rates support a radical mechanism

R	k
ethyl	0.19
cyclohexyl	0.33
1-adamantyl	0.70
allyl	too fast to measure

can the phosphine intermediate be formed in situ?

Maeda, H.; Maki, T.; Eguchi, K.; Koide, T.; Ohmori, H. Tet. Lett. 1994, 35, 4129

phosphine	triethylammonium salt	total electricity	yield
PPh ₃	BF ₄ -	5 F/mol	trace
PPh ₃	CI-	5 F/mol	66%
PPh ₃	Br-	5 F/mol	94%
PPh ₃	Br-	4 F/mol	70%
PBu ₃	Br-	5 F/mol	68%
none	Br [_]	5 F/mol	0%

phosphine necessary for reduction to occur

Maeda, H.; Maki, T.; Eguchi, K.; Koide, T.; Ohmori, H. Tet. Lett. 1994, 35, 4129

Dang, H.-S.; Franchi, P.; Roberts, B. P. Chem. Commun. 2000, 499

Dang, H.-S.; Franchi, P.; Roberts, B. P. Chem. Commun. 2000, 499

Dang, H.-S.; Franchi, P.; Roberts, B. P. Chem. Commun. 2000, 499

alcohol coordination to Ti(III)

inner sphere reduction

trapping of radical by Ti(III)

Barrero, A. F. et al J. Am. Chem. Soc. 2010, 132, 254

Barrero, A. F. et al Org. Biomol. Chem. 2015, 13, 3462

Titanium Catalyzed Alcohol Reduction

Functionalization of C–O Bonds

- Radical alcohol deoxygenation
 - Thiocarbonyl methods
 - Phosphite activation
 - Thiol catalysis
 - Titanium-mediated deoxygenation
- Transition metal C–O bond insertion
 - Aryl methyl ether electrophiles
 - Ru directed C–O bond insertion
 - Phenol cross-coupling

Η

.0、_X

First Report of Aryl Methyl Ether Cross-Coupling

much more efficient for napthyl ethers, although some reactivity observed for anisoles

Extension to Anisole Electrophiles

ligand	ArOMe	yield
PEt ₃	75%	7%
P <i>i</i> Bu ₃	32%	42%
P <i>I</i> Pr ₃	<1%	82%
PCy ₃	0%	93%
PPh ₂ Cy	7%	81%
PPh ₃	74%	15%

Extension to Anisole Electrophiles

Dankwardt, J. W. Angew. Chem. Int. Ed. 2004, 43, 2428

Methyl Ether Kumada Cross-Couplings

Aryl Methyl Ether Cross-Couplings

development of an aryl methyl ether Suzuki-Miyaura coupling would be highly advantageous

Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem. Int. Ed. 2008, 47, 4866

requirement for extended conjugation suggests an alternative oxidative addition mechanism

ArOMe effective electrophile in Kumada but not Suzuki-Miyaura coupling

Dankwardt, J. W. Angew. Chem. Int. Ed. 2004, 43, 2428

Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem. Soc. 1979, 101, 2246

Kakiuchi, F.; Tsui, M.; Ueno, S.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2004, 126, 2706

first example of an isolated aryl C–O bond

oxidative addition complex with transition metal

Activation of C–O Bonds is Challenging

carbon-oxygen bonds are much stronger than the corresponding carbon-halide bonds

Phenolic C–O Bond Cross-Coupling

Phenolic C–O Bond Cross-Coupling

metal salt	halide	GC yield
Li+	Br [_]	8%
K+	Br−	14%
Na ⁺	Br-	81%
Mg ⁺²	Br-	99%
Mg ⁺²	CI-	64%
Mg ⁺²	I–	87%

Phenolic C–O Bond Cross-Coupling

Yu, D.-G.; Li, B.-J.; Zheng, S.-F.; Guan, B.-T.; Wang, B.-Q.; Shi, Z.-J. Angew. Chem. Int. Ed. 2010, 49, 4566

Benzylic Alcohol C–O Bond Cross-Coupling

methyl Grignard reagent to form magnesium alkoxide

benzylic alcohol C–O bond weaker than phenol - reflected in lower T required

Yu, D.-G.; Wang, X.; Zhu, R.-Y.; Luo, S.; Zhang, X.-B.; Wang, B.-Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638

Benzylic Alcohol C–O Bond Cross-Coupling

alkyl Grignard reagents were not effective

Yu, D.-G.; Wang, X.; Zhu, R.-Y.; Luo, S.; Zhang, X.-B.; Wang, B.-Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638

Benzylic Alcohol C–O Suzuki-Miyaura

Benzylic Alcohol C–O Suzuki-Miyaura

Cao, Z.-C.; Yu, D.-G.; Zhu, R.-Y.; Wei, J.-B.; Shi, Z.-J. Chem. Commun. 2015, 51, 2683

Benzylic Alcohol C–O Suzuki-Miyaura

Cao, Z.-C.; Yu, D.-G.; Zhu, R.-Y.; Wei, J.-B.; Shi, Z.-J. *Chem. Commun.* **2015**, *51*, 2683