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Diverse applications of enzymes

B World enzyme market in 2003

Product USD (Millions)
Detergents 789
Foods 634
Agriculture and feed 376
Textile processing 237
Pulp, paper, leather, and chemicals 222

Sanchez, S.; Demain, A. L. Org. Process Res. Dev. 2011, 15, 224-230.
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Diverse applications of enzymes

B Enzymes can provide many advantages for chemical synthesis
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Utilizing natural enzymes for chemical reactions
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Naturally occuring enzyme

Activity for specific substrate(s)

Unstable under process conditions

B Naturally occuring enzymes usually do not have desired catalytic reactivity

Ideal biocatalyst

Activity for desired substrate(s)

Tolerates process conditions

How do chemists transform natural enzymes into useful biocatalysts?
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Modification of enzyme catalysts

B Proteins are modified through iterative mutation and screening
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Evolved enzyme

Bloom, J. D.; Arnold, F. H. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 9995—-10000.



Protein-Engineered Biocatalysts in Industry

Generating protein diversity

B Methods for mutagenesis

Site-directed mutagenesis
A number of methods are known for specifically substituting individual amino acids in a protein

Requires a lot of structural information to be useful, often a crystal structure and computational modeling

Error-prone PCR
The polymerase chain reaction reaction is naturally error prone

This can be amplified by increasing Mg2+, adding Mn2+ and by using unequal nucleotide concentrations

Primrose, S. B.; Twyman, R. In Principles of Gene Manipulation and Genomics, 7t ed.; Wiley-Blackwell, 2006; ch. 8
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Generating protein diversity

B Methods for mutagenesis

Polymerase chain reaction - PCR
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Primrose, S. B.; Twyman, R. In Principles of Gene Manipulation and Genomics, 7t ed.; Wiley-Blackwell, 2006; ch. 8
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Generating protein diversity

B Methods for mutagenesis

Site-directed mutagenesis
A number of methods are known for specifically substituting individual amino acids in a protein

Requires a lot of structural information to be useful, often a crystal structure and computational modeling

Error-prone PCR
The polymerase chain reaction reaction is naturally error prone

This can be amplified by increasing Mg2+, adding Mn2+ and by using unequal nucleotide concentrations

Gene shuffling
DNA sequences from several similar proteins are fragmented and randomly recombined

A larger extent of fragmentation results in a greater number of single site mutations

Primrose, S. B.; Twyman, R. In Principles of Gene Manipulation and Genomics, 7t ed.; Wiley-Blackwell, 2006; ch. 8
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Generating protein diversity

B Methods for mutagenesis

l Fragment with DNase ’
I Ancestral species v
Evolution _ _ _ .
| | Species 1 |
L ]
_— e
. e — g
L | Species 2
Denature, mix and anneal
| | Species 3
! —— —
I Species 4 e S
l Extend DNA
DNA shuffling
in vitro
l Denature and anneal
Y — e——
- _— — —
T T ] ] l[xtcndDNA
L T e Hybrid genes
B ] J
CC l
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Primrose, S. B.; Twyman, R. In Principles of Gene Manipulation and Genomics, 7t ed.; Wiley-Blackwell, 2006; ch. 8
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Case studies
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Synthesis of atorvastatin

B Lowers blood cholesterol by inhibiting the HMG-CoA reductase enzyme
W Discovered at Parke-Davis, later acquired by Pfizer @ Lirsrorn

B Best-selling drug of all time, with over $125 billion in total sales
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Synthesis of atorvastatin

B Process route
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Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of atorvastatin

B Previous routes to hydroxynitrile starting material

OH
NC \)\/CozEt B Estimated demand 100 mT per year

B Simplified route that reduces waste is highly desirable
key hydroxynitrile

1) NaCN
OH 2) NaOH HB NaCN
HO\)\/CI — H+> \)\/CozEt —y \)\/COzEt - > \)\/COQEt
from kinetic
resolution

kinetic resolution - max 50% yield
two steps involving the use of cyanide

HBr required to form bromohydrin

Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of atorvastatin

B Previous routes to hydroxynitrile starting material

OH
NC \)\/CozEt B Estimated demand 100 mT per year

B Simplified route that reduces waste is highly desirable
key hydroxynitrile

lactose Zl Br CO,Et 2 NC \)\/COQEt
2) H+ EtOH

uses chiral pool materials

HBr required to form bromohydrin

Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of atorvastatin

B Previous routes to hydroxynitrile starting material

NC \)\/CozEt B Estimated demand 100 mT per year

key hydroxynitrile

OH

B Simplified route that reduces waste is highly desirable
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EtOH

asymmetric NaCN

\)I\/COZEt - \)\/COZEt - \)\/COZEt
hydrogenation

high pressure H, for asymmetric reduction

harsh cyanation conditions

Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of atorvastatin

B Previous routes to hydroxynitrile starting material

OH
NC \)\/Cozgt B Estimated demand 100 mT per year

B Simplified route that reduces waste is highly desirable
key hydroxynitrile

Issues to be addressed
B Requirement of chiral pool materials or high pressure hydrogenation to access alcohol

B Cyanation requires harsh conditions, challenging to separate product from byproducts

Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of atorvastatin

B Enzymatic route to hydroxynitrile starting material

OH
NC \)\/CozEt B Estimated demand 100 mT per year

B Simplified route that reduces waste is highly desirable
key hydroxynitrile

ketone

0O reductase OH
C'\)I\/COZE" [\ > CI\)\/COZEt

NADPH NADP

\_/

glucose

gluconate —=& glucose

dehydrogenase

Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of atorvastatin

Bl Ketone reductase mechanism ketone

0O reductase OH
Tyr CI\)]\/COZEt f \‘ ¢ ~ )\/COZEt

NADPH NADP

\_/

glucose

gluconate —= glucose

dehydrogenase

B Hydrogen bond to histidine orients substrate
B Proton transfer occurs from tyrosine residue

B Lysine provides electrostatic stabilization

B NADPH positioned by hydrogen bond to asparagine

Kratzer, R.; Wilson, D. K.; Nidetzky, B. Life 2006, 58, 499-507.
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Synthesis of atorvastatin

B Enzymatic route to hydroxynitrile starting material

OH
NC \)\/CozEt B Estimated demand 100 mT per year

B Simplified route that reduces waste is highly desirable
key hydroxynitrile

ketone

0O reductase OH —HCI o HCN OH
CI\)I\/COZEt f \‘ - CI\)\/COQEt | > COEt e \)\/CozEt

NADPH NADP Halohydrin dehalogenase

\_/

glucose

gluconate —=& glucose

dehydrogenase

Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of atorvastatin

B Halohydrin dehalogenase mechanism
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lT B Deprotonation by tyrosine residue
Arg
)\ . H B Hydrogen bonding catalysis from serine
H.NT NN < Tyr
° |
H<__ /©/ Bl Binding pocket for departing halide
“~-0
_H
ol.__
“T-H_ __Ser
Cl- ©
halide CO,Et

binding pocket ,
Janssen, D. B. et. al. J. Bacteriol. 2001, 183, 5058-5066.
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Synthesis of atorvastatin

B Directed evolution of KRED and GDH enzymes using DNA shuffling

ketone
o) reductase OH —HCI o HCN OH
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Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of atorvastatin

Bl Directed evolution of KRED and GDH enzymes using DNA shuffling

ketone
0O reductase OH — HCI o HCN OH
Cl \)I\/COQEt f \‘ e \)\/COZEt | > COEt NG \)\/COZEt
NADPH NADP Halohydrin dehalogenase
gluconate —=& k j glucose
glucose
dehydrogenase
Initial process (wild-type enzymes) Final process (evolved enzymes)
Substrate (g/L) 80 160
Reaction time (h) 24 8
Enzyme loading (g/L) 9 0.9
Isolated yield (%) 85 95
Product ee (%) >99.5 >99.9

Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.



Bl Directed evolution of HDDH enzyme using DNA shuffling
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ketone

reductase

7N

NADPH NADP

\_/

gluconate —=&

glucose

glucose

dehydrogenase

Synthesis of atorvastatin
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Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.



Protein-Engineered Biocatalysts in Industry

Synthesis of atorvastatin

B Directed evolution of HDDH enzyme using DNA shuffling

ketone
') reductase OH —HCI o HCN OH
Cl \)I\/COQEt f \‘ e \)\/COZEt | > COEt NG \)\/COZEt
NADPH NADP Halohydrin dehalogenase
gluconate —=& k j glucose
glucose
dehydrogenase
Inital process (wild-type enzyme) Final process (evolved enzyme)
Substrate (g/L) 20 140
Reaction time (h) 72 5
Enzyme loading (g/L) 30 1.2
Isolated yield (%) 67 92
Product ee (%) >99.5 > 99.5

Ma, S. K. et. al. Green Chem. 2012, 12, 81-86.
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Synthesis of sitagliptin

B Antidiabetic dipeptidyl peptidase-4 inhibitor
B Developed and marketed by Merck J{?ﬂ%,ﬁa

B Often used as a combination therapy with other medicines
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Synthesis of sitagliptin

B First generation process route

n
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Desai, A. A. Angew. Chem. Int. Ed. 2011, 50, 1974—-1976.
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Synthesis of sitagliptin

B Second generation process route

0
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Desai, A. A. Angew. Chem. Int. Ed. 2011, 50, 1974—-1976.
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Synthesis of sitagliptin

B Third generation process route

F F

F transaminase F

NH @)
o C])\ pyridoxal phosphate 2

N YN\N y N /\|4N\N

CFa CFy

» . o) NH,
B Transition metal catalyzed hydrogenation ATA-117 -
required carbon treatment to remove Rh as Me > Me
well as ee upgrade through recrystallization
M Biocatalysis presents an opportunity to > 99.9% ee
attain excellent yield and near perfect
selectivity under mild conditions

Chem. Commun. 2009, 2127-2129.

Savile, C. K. et. al. Science 2010, 329, 305-309.
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Transaminase mechanism
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Savile, C. K. et. al. Science 2010, 329, 305-309.
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Synthesis of sitagliptin

B Design of a transaminase catalyst - site saturation libraries in small and large pockets

N.wi;_.rq\_j S F
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o o O
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L s
L FiC

Savile, C. K. et. al. Science 2010, 329, 305-309.
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Orange: Large pocket

Green: Catalytic
residues

Teal: Small Pocket

Savile, C. K. et. al. Science 2010, 329, 305-309.
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Synthesis of sitagliptin

B Third generation process route

F F
F transaminase F

]\ pyridoxal phosphate

NYN\N > N/\léN\N

B Site saturation and combinatorial libraries of binding pocket screened for activity

B Most active mutant subjected to directed evolution for activity and stability under process conditions

Savile, C. K. et. al. Science 2010, 329, 305-309.
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Synthesis of sitagliptin

Figure S1. Compounded fold improvements identified in high-throughput screening.
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Savile, C. K. et. al. Science 2010, 329, 305-309.
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Synthesis of sitagliptin

Figure S2. Head-to-head comparison of the top variants from each round of evolution under process-like
conditions. The top variants from each round of evolution were compared under identical reaction
conditions: 5 g/L enzyme, 50 g/L substrate, 1 M i-PrNH,, 1 mM PLP, 50% DMSO in 100 mM
tricthanolamine, pH 8.5 at 45°C for 24 h without acetone removal or additional pH control.
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Savile, C. K. et. al. Science 2010, 329, 305-309.



Protein-Engineered Biocatalysts in Industry

B Process optimization

NH, O

Me /l\)I\N =N
O@/N

CF,

Activity on model substrate

Synthesis of sitagliptin

38% conversion
10 g/L enzyme
2 g/L substrate
0.5 M /PrNH,
5% DMSO / triethanolamine

F

Activity on sitagliptin ketone

76% conversion
10 g/L enzyme
2 g/L substrate
0.5 M /PrNH,
5% DMSO / triethanolamine

F

Optimized process

92% yield, >99.9% ee
0.6 g/L enzyme
200 g/L substrate
1 M /PrNH,
50% DMSO / triethanolamine

Savile, C. K. et. al. Science 2010, 329, 305-309.
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Synthesis of sitagliptin

B Third generation process route

F F
F transaminase F

]\ pyridoxal phosphate

N/YN\N s N/\|4N\N

M Increase in overall yield relative to second generation process: 13%

B Waste reduction relative to second generation process: 19%

Savile, C. K. et. al. Science 2010, 329, 305-309.
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Synthesis of simvastatin

M Lipid lowering medication - HMG CoA reductase inhibitor -

SIMVASTATIN
2 ﬂﬂ?ﬂ Lablets

B Developed and marketed by Merck

B Produced by semisynthesis from lovastatin
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Synthesis of simvastatin

B Produced by semisynthesis

HO O HO @)
O - O >
- steps -
Me /\l)J\Q s Me /v)J\

Me Me Me
Me ot Me
Lovastatin Simvastatin
Isolated from Aspergillus terreus Increased inhibitory properties
Hydroxymethylglutaryl CoA reductase inhibitor Lower undesirable side effects

Xie, X.; Watanabe, K.; Woijcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13, 1161-1169.
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Synthesis of simvastatin

B Typical semisynthetic route

TBSCI

- Me Me - deprotect
OH , _ P Me . o

Me Me

Me®

Xie, X.; Watanabe, K.; Woijcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13, 1161-1169.
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Synthesis of simvastatin

B Potential synthesis utilizing biocatalysis

HO @)
T
- hydrolysis
Me /\l)J\Q >

Me

Me*" Me*"
0
Direct enzymatic route: Me /YJ\S - oA
Me Me
B Higher yielding process, cost savings > Me /YJ\O

Me
B Remove need for protecting groups

Me o

Xie, X.; Watanabe, K.; Woijcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13, 1161-1169.
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Synthesis of simvastatin

B Selective biocatalytic acylation reaction

\/;\n,s
Ser76~ 'OH © Ser76—_
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Ser76~ ©O
/\ + /\ N
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US Patent WO/2011/041231
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Synthesis of simvastatin

B Selective biocatalytic acylation reaction .
g ooy

O
Y
5
2
e

Me

Me Me Me*'

Improved thermal stability
Directed saturation mutagenesis

Improved acyltransferase activity

evolution error-prone PCR
Use of a small molecule acyl donor

Xie, X.; Watanabe, K.; Woijcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13, 1161-1169.



B Directed evolution of acyliransferase

Protein-Engineered Biocatalysts in Industry

Synthesis of simvastatin

FIG. 13: . Amino acid substitutions and characterization of LovD variants

Mutations Whole cell  key Ky of MJA Ky of DMB- Soluble protein Ty(°C)?
Activity’ (min™) (mM) " SMMP (mM')*  (mg/L)’

GO 1 0.66+0.03  0.7740.17  0.67+0.12 138+11 39.5+0.4

Gl A86V 1.2 0.79+0.03  0.74£0.16  0.66=0.19 140+5.4 41+0.7

G2.1 A86V D12G G275S 1.9 1.14£0.03  0.91x0.17  0.62+0.10 184+8.7 40.5+0.4

G22 A86V A190T 1.8 1.20+£0.09  0.74£021  0.69+0.17 168+17 41+0.4

G3 A86V D12G A190T G275S 3.6 1.86£0.09  0.77+0.11  0.70+0.19 205+23 41+0.4

G4.1 A86V DI2G AI90T G275S 4.8 2.13£0.03  0.70:0.24  0.66:+0.16 183+18 43.5+0.7
A10V K26E

G42 A86V DI12G A190T G275S 5.2 2.16£0.12  0.80£024  0.640.16 22149.3 42.5+1.9
H161Y K227R

G5 A86V DI12G AI90T G2758 6.4 2.61£0.03  0.74+0.03  0.69+0.14 206+5.7 46.5+0.4
K26E H161Y ]

G6  A86V DI2G Al190T G275S 9.3 3.30+£0.06  0.70£0.07  0.63+0.15 212+3.9 47+0.1
K26E H161Y V334D L361M

G7  A86V DI12G AI90T G275 112 4.80+£0.06  0.70+0.04  0.69+0.17 21446.3 48.5+0.7
K26E H161Y V334F

US Patent WO/2011/041231
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Synthesis of simvastatin

B Directed evolution of acyltransferase

Improved Catalytic Activity

0 1 2 3 4 5 6 7 8 9 10
Directed evolution round

US Patent WO/2011/041231
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Synthesis of simvastatin

B Directed evolution of acyltransferase

Improved Protein Solubility
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Directed evolution round

US Patent WO/2011/041231
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Synthesis of simvastatin

B Directed evolution of acyltransferase

Improved Protein Stability

51
49
47

45

T (°C)

41

|
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37

35
0 1 2 3 4 5 6 7 8 9 10

Directed evolution round

US Patent WO/2011/041231
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Synthesis of simvastatin

B Selective biocatalytic acylation reaction o

Me

Me Me Me

B Reduced use of hazardous substances and solvents in synthesis
W Catalyst from renewable feedstocks, byproducts all recycled

B Produced in 97% yield compared to < 70% for previous processes

Xie, X.; Watanabe, K.; Woijcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13, 1161-1169.
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Case studies




