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Sanchez, S.; Demain, A. L. Org. Process Res. Dev.  2011, 15 , 224–230.

■ World enzyme market in 2003

Protein-Engineered Biocatalysts in Industry
Diverse applications of enzymes

Product USD (Millions)

Detergents

Foods

Agriculture and feed

Textile processing

Pulp, paper, leather, and chemicals

789

634

376

237

222



Koeller, K. M.; Wong, C.-H. Nature 2001, 409, 232–240.

■ Enzymes can provide many advantages for chemical synthesis
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Diverse applications of enzymes

Higher enantioselectivity and regioselectivity

Can be effective in both aqueous and organic media

Typically do not require protecting groups

Operate under mild conditions with high efficiency
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■ Naturally occuring enzymes usually do not have desired catalytic reactivity
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Utilizing natural enzymes for chemical reactions

Naturally occuring enzyme Ideal biocatalyst

Activity for specific substrate(s)

Unstable under process conditions

Activity for desired substrate(s)

Tolerates process conditions

How do chemists transform natural enzymes into useful biocatalysts?



Bloom, J. D.; Arnold, F. H. Proc. Natl. Acad. Sci. U.S.A.  2009, 106 , 9995–10000.

■ Proteins are modified through iterative mutation and screening

Protein-Engineered Biocatalysts in Industry

Parent enzyme

Modification of enzyme catalysts

mutagenesis screening
and

selection

Evolved enzyme

■ Evolved proteins are used as parents for another iteration

■ The process is continued until desired reactivity is reached

Mutant proteins



Primrose, S. B.; Twyman, R. In Principles of Gene Manipulation and Genomics, 7th ed.; Wiley-Blackwell, 2006; ch. 8

■ Methods for mutagenesis
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Generating protein diversity

Error-prone PCR

Gene shuffling

Site-directed mutagenesis
A number of methods are known for specifically substituting individual amino acids in a protein

Requires a lot of structural information to be useful, often a crystal structure and computational modeling

The polymerase chain reaction reaction is naturally error prone

This can be amplified by increasing Mg2+, adding Mn2+ and by using unequal nucleotide concentrations

DNA sequences from several similar proteins are fragmented and randomly recombined

A larger extent of fragmentation results in a greater number of single site mutations
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A larger extent of fragmentation results in a greater number of single site fragmentations
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Case studies
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Synthesis of atorvastatin
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Atorvastatin (Lipitor)

■ Lowers blood cholesterol by inhibiting the HMG-CoA reductase enzyme

■ Discovered at Parke-Davis, later acquired by Pfizer

■ Best-selling drug of all time, with over $125 billion in total sales



Ma, S. K. et. al. Green Chem. 2012, 12 , 81–86.

■ Process route
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key hydroxynitrile

Synthesis of atorvastatin
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Ma, S. K. et. al. Green Chem. 2012, 12 , 81–86.

■ Previous routes to hydroxynitrile starting material
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key hydroxynitrile

Synthesis of atorvastatin

NC CO2Et
OH

■ Estimated demand 100 mT per year

■ Simplified route that reduces waste is highly desirable

HO Cl
OH

HO CO2Et
OH

Br CO2Et
OH

NC CO2Et
OH

from kinetic
resolution

3) EtOH, H+

1) NaCN
2) NaOH HBr NaCN

kinetic resolution - max 50% yield

two steps involving the use of cyanide

HBr required to form bromohydrin
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■ Previous routes to hydroxynitrile starting material
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key hydroxynitrile

Synthesis of atorvastatin

NC CO2Et
OH

■ Estimated demand 100 mT per year

■ Simplified route that reduces waste is highly desirable

NC CO2Et
OH

lactose
O O

HO HBr

EtOH

1) HO–, H2O2

2) H+ Br CO2Et
OH NaCN

uses chiral pool materials

HBr required to form bromohydrin
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■ Previous routes to hydroxynitrile starting material
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key hydroxynitrile

Synthesis of atorvastatin

NC CO2Et
OH

■ Estimated demand 100 mT per year

■ Simplified route that reduces waste is highly desirable
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high pressure H2 for asymmetric reduction

harsh cyanation conditions
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■ Previous routes to hydroxynitrile starting material
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key hydroxynitrile

Synthesis of atorvastatin

NC CO2Et
OH

■ Estimated demand 100 mT per year

■ Simplified route that reduces waste is highly desirable

Issues to be addressed

■ Requirement of chiral pool materials or high pressure hydrogenation to access alcohol

■ Cyanation requires harsh conditions, challenging to separate product from byproducts



Ma, S. K. et. al. Green Chem. 2012, 12 , 81–86.

■ Enzymatic route to hydroxynitrile starting material
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key hydroxynitrile

Synthesis of atorvastatin

NC CO2Et
OH

■ Estimated demand 100 mT per year

■ Simplified route that reduces waste is highly desirable
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Kratzer, R.; Wilson, D. K.; Nidetzky, B. Life 2006, 58, 499–507.

■ Ketone reductase mechanism
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■ Hydrogen bond to histidine orients substrate

■ Proton transfer occurs from tyrosine residue

■ Lysine provides electrostatic stabilization

■ NADPH positioned by hydrogen bond to asparagine
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■ Enzymatic route to hydroxynitrile starting material
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key hydroxynitrile

Synthesis of atorvastatin

NC CO2Et
OH

■ Estimated demand 100 mT per year

■ Simplified route that reduces waste is highly desirable
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Janssen, D. B. et. al. J. Bacteriol. 2001, 183 , 5058–5066.

■ Halohydrin dehalogenase mechanism
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■ Deprotonation by tyrosine residue

■ Hydrogen bonding catalysis from serine

■ Binding pocket for departing halide

■ NADPH positioned by hydrogen bond to asparagine
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Ma, S. K. et. al. Green Chem. 2012, 12 , 81–86.

■ Directed evolution of KRED and GDH enzymes using DNA shuffling
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Synthesis of atorvastatin
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■ Directed evolution of KRED and GDH enzymes using DNA shuffling
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Initial process (wild-type enzymes) Final process (evolved enzymes)

Substrate (g/L)

Reaction time (h)

Enzyme loading (g/L)

Isolated yield (%)

Product ee (%)

80 160

24 8

9 0.9

85 95

> 99.5 > 99.9
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Ma, S. K. et. al. Green Chem. 2012, 12 , 81–86.

■ Directed evolution of HDDH enzyme using DNA shuffling
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■ Directed evolution of HDDH enzyme using DNA shuffling
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Inital process (wild-type enzyme) Final process (evolved enzyme)

Substrate (g/L)

Reaction time (h)

Enzyme loading (g/L)

Isolated yield (%)

Product ee (%)

20 140
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67 92

> 99.5 > 99.5
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Synthesis of sitagliptin

■ Antidiabetic dipeptidyl peptidase-4 inhibitor

■ Developed and marketed by Merck

■ Often used as a combination therapy with other medicines
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Desai, A. A. Angew. Chem. Int. Ed.  2011, 50, 1974–1976.

■ First generation process route
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Desai, A. A. Angew. Chem. Int. Ed.  2011, 50, 1974–1976.

■ Second generation process route
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Savile, C. K. et. al. Science 2010, 329, 305–309.

■ Third generation process route
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■ Transition metal catalyzed hydrogenation 
required carbon treatment to remove Rh as 
well as ee upgrade through recrystallization

■ Biocatalysis presents an opportunity to 
attain excellent yield and near perfect 
selectivity under mild conditions
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Chem. Commun. 2009, 2127–2129.



Savile, C. K. et. al. Science 2010, 329, 305–309.
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Savile, C. K. et. al. Science 2010, 329, 305–309.

■ Design of a transaminase catalyst - site saturation libraries in small and large pockets
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Synthesis of sitagliptin



Savile, C. K. et. al. Science 2010, 329, 305–309.
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residues 
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Savile, C. K. et. al. Science 2010, 329, 305–309.

■ Third generation process route
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transaminase
pyridoxal phosphate

F
F

F

O

N

O

N
N

N

CF3

F
F

F

NH2

N

O

N
N

N

CF3

iPrNH2

■ Site saturation and combinatorial libraries of binding pocket screened for activity

■ Most active mutant subjected to directed evolution for activity and stability under process conditions



Savile, C. K. et. al. Science 2010, 329, 305–309.

■ Process optimization
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Savile, C. K. et. al. Science 2010, 329, 305–309.

■ Process optimization
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■ Process optimization
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Savile, C. K. et. al. Science 2010, 329, 305–309.

■ Third generation process route
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■ Increase in overall yield relative to second generation process: 13%

■ Waste reduction relative to second generation process: 19%
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■ Lipid lowering medication - HMG CoA reductase inhibitor

■ Developed and marketed by Merck

■ Produced by semisynthesis from lovastatin
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Xie, X.; Watanabe, K.; Wojcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13 , 1161–1169.

■ Produced by semisynthesis
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Increased inhibitory properties
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Xie, X.; Watanabe, K.; Wojcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13 , 1161–1169.

■ Typical semisynthetic route
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Xie, X.; Watanabe, K.; Wojcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13 , 1161–1169.

■ Potential synthesis utilizing biocatalysis
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US Patent WO/2011/041231

■ Selective biocatalytic acylation reaction
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Xie, X.; Watanabe, K.; Wojcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13 , 1161–1169.

■ Selective biocatalytic acylation reaction
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US Patent WO/2011/041231

■ Directed evolution of acyltransferase
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US Patent WO/2011/041231

■ Directed evolution of acyltransferase
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US Patent WO/2011/041231

■ Directed evolution of acyltransferase
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US Patent WO/2011/041231

■ Directed evolution of acyltransferase
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Xie, X.; Watanabe, K.; Wojcicki, W. A.; Wang, C. C. C.; Tang, Y. Chem. Biol. 2006, 13 , 1161–1169.

■ Selective biocatalytic acylation reaction

Protein-Engineered Biocatalysts in Industry
Synthesis of simvastatin
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■ Reduced use of hazardous substances and solvents in synthesis

■ Catalyst from renewable feedstocks, byproducts all recycled

■ Produced in 97% yield compared to < 70% for previous processes



EPA Presidential Green Chemistry Award 2012

EPA Presidential Green Chemistry Award 2010

EPA Presidential Green Chemistry Award 2006

Protein-Engineered Biocatalysts in Industry
Case studies
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