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Education and Career

B Education
B.S. Chemistry - University of Edinburgh (1989)
Ph.D. Chemistry - University of Edinburgh (1993)

Post-doctoral research - Stephen Kent, The Scripps Research Institute

Senior Research Associate - The Scripps Research Institute

B Independent Career - Rockefeller University
Assistant Professor (1996 - 2000)
Associate Professor (2000 - 2002)
Professor (2002 - 2005)

Richard E. Salomon Family Professor (2005 - present)

Director of Pels Family Center for Biochemistry and Structural Biology
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Education and Career

B Awards

Blavatnik Award for Young Scientists
Vincent du Vigneaud Award

Irving Sigal Young Investigator Award
Leonidas-Zervas Award

Burroughs Wellcome Fund New Investigator Award

B Research Focuses

Protein function in complex systems of biological interest
Protein semi-synthesis and total synthesis

Ligation and protein splicing

Post-translational modifications

Isotope and fluorescence labeling

Structure - function relationships in K channels
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General Overview of Research

M Protein function central in experimental biology

Bl Description of post-translational modifications

B Function B 3D structure
H Stabilty B Interactions
o
Cl
B Accelerate acquisition of protein function information RO-}-P—OH
OH

M Access useful peptides unattainable by ribosomal synthesis
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Previous Methods for Peptide Synthesis
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Solid phase peptide synthesis (SPPS)
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desire polypeptide -~ - NH,
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B Useful method with significant drawbacks

M Incorporate unnatural or D-amino acids B Maximum length of ~50 amino acids

B Each step must be very efficient

) : Bl Can be very time consuming
35 residue polypeptide:

99% vyield per step = 49% Y
95% yield per step = 3% IY B Many peptides not suitable for SPPS



Previous Methods for Peptide Synthesis

e AAGUU Connnnnn —_— wannnrAAGUAGUUC

M Install nonsense mutation into mMRNA sequence

Bl Construct tRNA with corresponding anti-codon to incerpt "stop" codon

M Site selective incorporation of unnatural amino acid at "stop" codon

™ Difficult to prepare and deliver appropriate tRNA with acylated residue




Chemical Ligation

HN— polypeptide 2

polypeptide 2

polypeptide 2

Native Ligation (NL)

B Coupling of unprotected AA's
B Compatible with side chains

B Nearly quanitative yield

B General tool for semi-synthesis
B Works at physiological pH

B Numerous improvements

Figure adapted from Muir, T. W. Annu. Rev. Biochem. 2003, 72, 249.
Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776.



Chemical Ligation

B Applications in protein engineering to study biological systems
M Insertion of synthetic peptide into recombinant protein

M Biosensor with properties dependent upon state of system

- T~ OO (dansylamide)
RN

NMe
fluorescent probe 2

Abelson nonreceptor protein tyrosine kinase (Abl)

src Homolgy 2 domain (SH3) and src Homolgy domain 2 (SH2)

Cotton, G. J.; Ayers, B.; Xu, R.; Muir, T. W. J. Am. Chem. Soc. 1999, 121, 1100.



Chemical Ligation
oligopeptide PG
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Cotton, G. J.; Ayers, B.; Xu, R.; Muir, T. W. J. Am. Chem. Soc. 1999, 121, 1100.



Chemical Ligation
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6 M GdmCl, 140 mM NacCl, 200 mM phosphate buffer
1.5 vol% benzylmercaptan, 1.5 vol% thiophenol, 96 hours
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Cotton, G. J.; Ayers, B.; Xu, R.; Muir, T. W. J. Am. Chem. Soc. 1999, 121, 1100.



Chemical Ligation

3BP2-2BP1
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Cotton, G. J.; Ayers, B.; Xu, R.; Muir, T. W. J. Am. Chem. Soc. 1999, 121, 1100.



Chemical Ligation

BK;=0.12320.017 uM
B Monodentate ligands led to insignificant fluorescence increases
B Useful biosensor for future investigations

M High affinity, bidentate ligands

M in vitro screening of combinatorial peptide libraries

B Characterize protein-protein interactions that regulate Abl function
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fluorescent probe

Can native ligation regulate molecular processes to study protein function?

Cotton, G. J.; Ayers, B.; Xu, R.; Muir, T. W. J. Am. Chem. Soc. 1999, 121, 1100.



Chemical Ligation

B Chemical modification of proteins + external impulse

B Semi-synthesis through native ligation with photolabile PG

M Traditionally difficult to prepare photocaged systems

/J_,.r"' UV light
4 )
_ Ilgatlon _—O photorelease o
| T mm
protein that controls photocaged o
cell function protein . J
cell

B Control of protein function through subcellular localization with light

Pellois, J-.; Muir, T. W. Angew. Chem. Int. Ed. 2005, 44, 5713.



Chemical Ligation
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B Synthesize fluorophore-bearing fragment and ligate to recombinant protein

Pellois, J-.; Muir, T. W. Angew. Chem. Int. Ed. 2005, 44, 5713.



Chemical Ligation

HS G
2 from SPPS
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ligation
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M Ligated product shows 33% FRET between TR and EGFP at 488 nm

Pellois, J-.; Muir, T. W. Angew. Chem. Int. Ed. 2005, 44, 5713.



Chemical Ligation

Fluorescence Resonance Energy Transfer (FRET)
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donor in isolation donor with acceptor (< 10 nm)
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M Ligated product shows 33% FRET between TR and EGFP at 488 nm

Pellois, J-.; Muir, T. W. Angew. Chem. Int. Ed. 2005, 44, 5713.



Chemical Ligation

M in vitro photocleavage
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Pellois, J-.; Muir, T. W. Angew. Chem. Int. Ed. 2005, 44, 5713.



Chemical Ligation

M /in vivo photocleavage (microinjection into Hela cells)
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before irradiation at 360 nm after irradiation at 360 nm

green channel

green + red channel




Chemical Ligation

Bl Photolysis of protein in a cell
B Dosable manner with low-intensity UV light
M Valuable if different protein concentrations trigger different responses

B Photolysis of small molecule can change function of protein

o)

Abl-SH3 )I\SR

How are protein-bearing thioesters constructed?

® Total synthesis

® Expression

general methods

NN - protein

‘ Expressed Protein Ligation I



Expressed Protein Ligation (EPL)
Protein Splicing
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Muir, T. W. Annu. Rev. Biochem. 2003, 72, 249.



Expressed Protein Ligation (EPL)
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Expressed Protein Ligation (EPL)
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B Access to large proteins

B General method

B Post-translational modifications

B Structure and functions




Expressed Protein Ligation (EPL)

Protein Conformation

B Trp intrinsic fluorophore - sensitive to local environment

Trp
/R /R Trp
HN 0 Trp HN 0O O
HN— | Ig and _ HN Trp
— Trp = Trp
NH O NH
Trp Trp

M Risks of destabilizing protein or altering function

B Trp analogs well suited for studying structure (lack of techniques)



Expressed Protein Ligation (EPL)

Protein Conformation

B Trp intrinsic fluorophore - sensitive to local environment

Trp
/R /R Trp
HN 0 Trp HN 0O O
HN— ||gand _ HN Trp
— Trp = Trp
NH : NH
/ N Trp / N Trp
—=N =N

M Risks of destabilizing protein or altering function

B Trp analogs well suited for studying structure (lack of techniques)

B Dynamic properties of SH3 domain
SH3

M Previously studied in isolation

c-Crk-1 B Domain-specific biophysical information



Expressed Protein Ligation (EPL)

0
RSH
— SR

recombinant expression a-thioester coupling partner
7AW HS 7AW
His-tag SH3 X SH3
7AW a H.N 7AW
—_— 2

. . protease
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Muir, T. W.; et al. J. Am. Chem. Soc. 2004, 126, 14404.



W W69 involved in ligand binding (poly-Pro peptide)

Expressed Protein Ligation (EPL)

SH3 domain of c-Crk-1 adapter protein

W W70 component of hydrophobic core

Fold Change (361nm)
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Expressed Protein Ligation (EPL)

B SH3,
® SH2

O SH37aw

O c-Crk-I[SH3,aw]

Fraction Folded

GdmCl conc. (M)

B Stability stidies validate Trp substitution
M Isolated SH3 and c-Crk-I protein have similar thermodynamic properties
M First direct comparison of SH3 to multidomain protein

B Application of EPL with two recombinant peptide fragments



Small Molecule Protein Splicing

B Temporal control over protein function with small molecules

B Turning protein on/off is difficult with standard genetic techniques

Chemical Genetics

%@ igand Q

ligand O
Q

Mootz, H. D.; Muir, T. W. J. Am. Chem. Soc. 2002, 124, 9044.



Small Molecule Protein Splicing

B Temporal control over protein function with small molecules

B Turning protein on/off is difficult with standard genetic techniques

Chemical Genetics

o ] (v

peptide

peptide

B Dramatic changes in primary structure lead to changes in function

Conditional Protein Splicing

Mootz, H. D.; Muir, T. W. J. Am. Chem. Soc. 2002, 124, 9044.



Small Molecule Protein Splicing
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Conditional Protein Splicing = Protein Splicing + Molecule-Induced Heterodimerization
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Small Molecule Protein Splicing

Conditional Protein Splicing = Protein Splicing + Molecule-Induced Heterodimerization
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inteinN intein® >

AN N _
peptide peptide

. protein splicing
M Low affinity intein fragments

M Artificially split VMA intein
B MBP and His peptide fragments q._.?

B Fragemnts expressed in E. coli

+

Figures adapted from Mootz, H. D.; Muir, T. W. J. Am. Chem. Soc. 2002, 124, 9044.

B No reaction without rapamycin




Small Molecule Protein Splicing
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(only binds FKBP)

4-fold decrease with ascomycin
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Small Molecule Protein Splicing
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M First example of protein splicing by small molecule

B MBP and His are model protein

B No structural or sequence restrictions to exteins

Is this technique limited to the coupling of two peptide fragments?




Small Molecule Protein Splicing

tandem

AN splicing
peptide

>

Potential difficulties:
M Intein specificity
B Timing of splicing events
B Occurs under physiological conditions

B Starting materials only required in low concentrations

peptide




Small Molecule Protein Splicing

tandem

AN splicing
peptide

>

peptide

(L portece | 0

B Essentially nothing is known about molecular recognition

DnaEN . u DnaE® L _
B Why do naturally split intein spontaneously splice?

naturally split intein

B Suggests intrinsic affinity difference between two intein types




Small Molecule Protein Splicing
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VMAN VMAC (rapamycin) _
N P(CH,CH,CO5H)4
peptide (TCEP) peptide
N
Dnak . c-Crk-l protein
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Small Molecule Protein Splicing
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B Splicing can occur simultaneously or in a stepwise fashion
B Additional tags and protecting groups for easy isolation purification
M Proficient with purified fragments or crude cell lysates

B Streamlined process this great generality
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Native Chemical Ligation Expressed Protein Ligation
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Conditional and Tandem Protein Splicing
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