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Supramolecular Catalysis: An Introduction

■ In Nature: Highly efficient, well orchestrated cascades that takes places in well-defined reaction
                    environments

■ Lessons learned from Nature arises from the observation and understanding of enzyme catalysis

■ Early work focused on the synthesis of macrocycles for molecular recognition and culminated with
    the Nobel prize in Chemistry (1987) to Donald Cram, Jean-Marie Lehn and Charles Pedersen for
    "their development and use of molecules with structure-specific interactions of high selectivity"

■ Occasionally enormous accelerations were noted, change in selectivity but applications in synthetic
    chemistry remained elusive

■ Main drawback: Tedious synthesis of host molecules with catalytic entities

■ Last decade: New biomimetic approaches have arised which avoid elaborate syntheses

■ Self-assembly of higher-order capsules by pre-designed interactions such as H-bonding and metal-
    ligand coordination

Important literature covering supramolecular catalysis:

■ Supramolecular Catalysis; van Leeuwen, P. W. N. M., Ed.; Wiley-VCH: Weinheim, 2008

■ Modern Supramolecular Chemistry; Diederich, F.; Stang, P. J. Tykwinski, R. R., Eds.; Wiley-VCH:
   Weinheim, 2008

■ Vriezema, D. M.; Comellas Aragonés, M.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan, A. E.; 
   Nolte, R. J. M. Chem. Rev. 2005, 105, 1445-1489



Criterias for Artificial "Enzymes"

■ Molecular recognition: Selective recognition of desired substrate

■ Binding affinity: Cavity/site where substrate can bind

■ Reactive site: Proximal to binding site in order to react with substrate

■ Product release: Regeneration of host in order to achive catalyst turn-over
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1) H-Bonding

2) π-π Stacking

3) Cavity effect

Usual bottle-neck in many artificial supramolecular models

1) Unimolecular reactions: More TS-like conformations

2) Bimolecular reactions: Proximity effects leads to very high effective molarities ⇒ entropic advantage



Early Examples: Breslow's Ribonuclease Model System
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β-Cyclodextrin

■ Functionalized β-cyclodextrin baring two imidazole moieties

■ The substrate binds into the cavity of the catalyst in water solution

■ One imidazole acts as base and the other (protonated) acts as acid

■ Catalyzed hydrolysis is 100 times faster and selective (>99%) comp. non-catalyzed

Breslow, R.; Doherty, J.; Guillot, G.; Lipsey, C. J. Am. Chem. Soc. 1978, 100, 3227
Anslyn, E. V.; Breslow, R. J. Am. Chem. Soc. 1989, 111, 8931



Sanders' Zn(II) Porphyrin Trimer: Endo- or Exo-Selective Diels-Alder

■ Complete exo-selectivity in 2,2,2-trimer due to correct binding distance for exo-product (15 Å)

■ Complete endo-selectivity in 1,1,2-trimer due to correct binding distance for endo-product (12 Å)

■ 200-fold acceleration compared to non-catalyzed reaction, product inhibition.

■ Complete inhibition of the reaction when competitive binder is added
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Rebek's "Soft Ball"-Catalyzed Diels-Alder

■ Encapsulation by dynamic, reversible self-assembly of cage-like molecular complex

■ Encapsulation forces the reacting components in close proximity (high local concentration)
    ⇒ productive reaction pathway

■ Reversible encapsulation leads to product release and catalyst turnover

■ 75% conversion after 4 days, 10 fold acceleration compared to non-catalyzed reaction

Kang, J.; Rebek, J., Jr. Nature 1997, 385, 50
Kang, J.; Santamaria, J.; Hilmersson, G.; Rebek, J., Jr. J. Am. Chem. Soc. 1998, 120, 7389
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The Raymond Group's M4L6-Assembly

■ M4L6 stoichiometry: M = GaIII, AlIII, InIII, FeIII, TiIV, GeIV
     L = N,N'-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene

■ Well-defined, chiral self-assembling tetrahedron

■ Tris-bidentate coordination @ metal ⇒ stereogenic center 

■ -12 overall charge ⇒ water solubility. Naphthalene residues ⇒ hydrophobic cavity.

■ Hydrophobic, polyanionic host ⇒ stabilization of reactive cations by encapsulation



C-H-bond activation by Encapsulated Ir(III)-Catalysts

■ Polyanionic host and cationic, hydrophobic organometallic guest ⇒ driving force for encapsulation

■ Host-guest complexes with up to 70:30 d.r. obtained when using cis-butene pre-catalyst

■ Heating liberates olefin ligand and generates active Ir-comp

■ Addition of aldehyde ⇒ C-H insertion and release of CH4 and generation of Ir-acyl complex

■ Migratory deinsertion of Ir-acyl ⇒ chiral cationic Ir alkyl carbonyl product with d.r. up to 70:30
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[3,3] aza-Cope Rearrangements of Allyl Enammonium Salts
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■ Cationic enammonium = driving force for encapsulation

■ Neutral product = no driving force for re-encapsulation ⇒ catalyst turn-over

■ Rate acceleration = up to 3 orders of magnitude

■ Investigation of energetic parameters showed a decreased entropy barrier (ΔS )
    as well as a decreased enthalpic barrier for larger substrates (ΔH )

■ (ΔS ): Encapsulation of only tightly packed conformations that resembles the TS.
    Several degrees of freedom lost ⇒ decreased entropic barrier

■ (ΔH ): Encapsulation of larger substrates forces the substituents closer together. 
    Ground-state energy increased ⇒ decreased enthalpic barrier

R1 = H or Me
R2 = H, Me, Et, Pr
R3 = H, Me, Et, Pr, Bu, TMS

Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem. Int. Ed. 2004, 43, 6748
Fieldler, D.; van Halbeek, H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 10240
Hastings, C. J.; Fieldler, D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2008, 130, 10977



Mechanism for [3,3] aza-Cope rearrangement of enammonium substrates
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Mechanism for hydrolysis of the iminium product

■ Experiment series 2: High pH, varying [NMe4
+] from low to high

■ Rate of hydrolysis is first-order in [NMe4
+]. Saturation @ high [NMe4

+]

■ Ion association of NMe4
+ on the outside facilitates the displacement of iminium into the solution

■ Explains the pH dependance when ammonium salt present since OH- only exists in the bulk phase
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Acid Catalyzed Reactions

■ M4L6-complex bind/stabilizes cationic species over neutral ⇒ stabilization of cationic TS?

■ Acid catalyzed reaction = prime candidate. High-energy, monocationic intermediate

■ Would widen the scope of transformations to neutral substrates

■ Biomimetic approach: In Nature, electrostatic interactions can lead to pKa shifts up to 5 units due
    to precise stabilization of charged intermediates via H-bonding networks.
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Acid Catalyzed Reactions

■ Protonated amines remained encapsulated even when pH were higher than the pKa of
    the protonated amine ⇒ encapsulated guest is significantly stabilized by 1

■ Fast self-exchange rates confirms thermodynamic encapsulation rather than kinetic

■ To determine the magnitude of stabilization, the encapsulation was monitored as a function of pH

■ The pKa of the amine and the binding constant gives the effective basicity of the 
    encapsulated amine

■ pKa shifts with up to 4.5 units, largest ever seen in synthetic hosts

S + H+ + 1 SH+ + 1
K1

[SH+     1]⊃K3
H+ + [S     1]⊃

K2K4

K1 = Acid-base equil of S 
K2 = Binding constant of SH+

K3 = Acid-base equil of S inside 1
K4 = Binding constant of S



Acid Catalyzed Hydrolysis of Orthoformates and Acetals under Basic Conditions

■ Hydrolysis of orthoformates
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Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007, 316, 85
Pluth, M. D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2008, 130, 11423

■ Hydrolysis of acetals
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Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Angew. Chem. Int. Ed. 2007, 46, 8587
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■ Step 4: Protonated formate ester is ejected and further hydrolyzed in the solution

■ Reaction obeys Michaelis-Menten kinetics in similarities to enzymes with a pre-equilibration
    step ⇒ subtrate saturation followed by a first-order rate-limiting step (hydrolysis)

Mechanism for hydrolysis of orthoformates
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Conclusions: M4L6 Self-Assembly Hosts

■ Chiral anionic hosts can be utilized for incapsulation of chiral cationic organometalic
    complex with moderate to good diastereoselectivity. Examplified with Ir-cat C-H bond
    activation of aldehydes

■ Anionic hosts accelerates and catalyzes unimolecular rearrangments of cationic
    substrates. Examplified with [3,3] aza-Cope rearrangements of allyl enammonium salts

■ The scope of cation stabilization was further widen to neutral substrate participating in
    acid-catalyzed processes. Exemplified with acid-catalyzed hydrolysis of orthoformates and
    acetals in basic media
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The Fujita Group's M6L4-Assembly

■ M6L4 stoichiometry: M = PdII. L = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine

■ Well-defined, self-assembling octahedral

■ Possibility for using chiral diamine-PdII complexes ⇒ chiral enantiomerically pure assembly

■ +12 overall charge ⇒ water solubility. Hydrophobic electron deficient ligands ⇒ hydrophobic
    cavity with strong affinity for electron-rich guests.

■ Mediates photo-induces electron transfer for guest to the host due to electron-deficient ligands

First report: Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura, K Nature, 1995, 378, 469



[2+2] Photoadditions

■ R = H: In solution phase, low yield  & syn, anti mixture

■ R = H: Quantitative host-guest formation, 100% conversion in 30 min and only syn-isomer 

■ R = Me: No reaction in solution phase

■ R = Me: 100% conversion, only syn head-to-tail isomer

hν

Yoshizawa, M.; Takeyama, Y.; Kusukawa, T.; Fujita, M. Angew. Chem. Int. Ed. 2002, 41, 1347
Takaoka, K.; Kawano, M.; Ozeki, T.; Fujita, M. Chem. Commun. 2006, 1625

R R RR

R = H or Me

H2O
30 min



Unusual [2+2] & [4+2] Cycloadditions

Nishioka, Y.; Yamaguchi, T.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2007, 129, 7000
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Asymmetric [2+2] Photoadditions in Chiral Self-Assembled Hosts

■ Asymmetric synthesis in chiral cavities are relatively unexplored

■ Difficult to prepared large self-assebly hosts in enantiomerically pure form

■ M6L4-Pd(II) complexes with chiral diamine end-caps are easily prepared

■ TMEDA-Pd(II) ⇒ co-planar triazine ligands (X-ray)

■ Cyclohexane-1,2-diamine-Pd(II) ⇒ deformation of triazine ligand leading to chiral cavities
    Titled up to 17° with N-Et (calculations)

Nishioka, Y.; Yamaguchi, T.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2008, 130, 8160
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Asymmetric [2+2] Photoadditions in Chiral Self-Assembled Hosts

N OO hν
H2O
5 min

N O
O

R R

60% R = H: 40% ee
R = Me: 50% ee

■ Remarkable high asymmetric induction considering the remote location of the chiral ligand

■ Substituent on N important: N-Et 50% ee, N-Me 20% ee, N-H 5% ee

■ Confirms that, like in enzymes, indirect cavity-control by remote chiral ligands can be an
    important and viable strategy in asymmetric synthesis
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Nishioka, Y.; Yamaguchi, T.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2008, 130, 8160



Photocyclizations Through Kinetically Unfavored Pathways

■ Photoreaction of diphenylethanedione in degassed cyclohexane
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■ Photoreaction of diphenylethanedione in M6L4 self-assebly host

Unprecedented intramolecular
photocyclization

Furusawa, T.; Kawano, M.; Fujita, M. Angew. Chem. Int. Ed. 2007, 46, 5717



Photocyclizations Through Kinetically Unfavored Pathways

■ Proposed mechanism
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Alkane Photo-Oxidation via Host-Guest Electron Transfer

■ Irradiation (>300 nm) of an aqueous sol. of 1:4 host:adamantane complex gives blue color

■ Formation of adamantan-1-ol in 24 % yield (1 out of 4 guests are oxidized)

■ First one-electron reduction potential of the cage is considerably low ⇒ suggesting a 
    cage-mediated electron transfer

4
O2

H2O

O(O)H

24%
96% based on host

hν
H2O
RT
-H+

Yoshizawa, M.; Miyagi, S.; Kawano, M.; Ishiguro, K.; Fujita, M. J. Am. Chem. Soc. 2004, 126, 9172



Alkane Photo-Oxidation via Host-Guest Electron Transfer

■ Step 1: Photochemical excitation of the triazine ligand with a low lying LUMO

■ Step 2: One-electron transfer from the bridgehead C-H @ adamantane to the ligand

■ Step 3: Adamantane radical cation dissociated to an adamantane radical and H+

■ Step 4: Radical traps O2 or H2O.

hν

Yoshizawa, M.; Miyagi, S.; Kawano, M.; Ishiguro, K.; Fujita, M. J. Am. Chem. Soc. 2004, 126, 9172
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Mechanistic Elucidation of Alkane Photo-Oxidation

■ X-Ray analysis of H⊃G complex shows very short distances between C-H...π-system (triazine)

■ Control experiment 1: Host counterion (NO3
- to PF6

-) or solvent (H2O to MeCN) = no effect
 
■ Control experiment 2: Exchanging triazine for benzene = no photoreactivity

■ Conclusion: Radical should be generated on the ligands.

■ 18O-labeled O2 or H2O led to 18O-incorp. prod ⇒ suggests adamantyl radical

Yoshizawa, M.; Miyagi, S.; Kawano, M.; Ishiguro, K.; Fujita, M. J. Am. Chem. Soc. 2004, 126, 9172



Conclusions: M6L4 Self-Assembly Hosts

■ Cationic Pd(II) hosts can encapulate electron-rich aromatic substrates and be used to facilitate
    unusual and otherwise unfavored cycloadditions by geometrical control leading to TS-like
    encapulation conformations

■ The scope was then widen to asymmetric photoadditions using chiral diamine end-caps leading 
    moderate enantioselectivities

■ Then hosts has also been shown to facilitate kinetically unfavored and unprecedented
    photochemical cyclization by geometrical control

■ The cage also mediates photo-induced electron transfer from guest to the electron-poor ligands
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The Rebek Group's Open-Ended Cavitand

■ The cavitand is a vase-shaped structure built up from a resorcinarene scaffold and widely used in 
    molecular recognition

■ The conformation is stabilized by a seam of hydrogen bonds conferred by a cyclic array secondary
    amides around the rim
 
■ The rim is readily functionalized with reagents such as Kemp's triacid to bind to guests

■ Amides makes a polar region within the cavitand ⇒ hydrogen bonding with guests

■ Benzene rings in the walls ⇒ electron-rich π-surface to bound substrates
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Organocatalysis In a Synthetic Receptor: Regioselective Opening of Epoxy Alcohols

■ Brønsted acid catalyzed intramolecular ring-opening of 1,5-epoxy alcohols
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■ Model substrates and reference acid

Shenoy, S. R.; Pinacho Crisóstomo, F. R.; Iwasawa, T.; Rebek, J., Jr. J. Am. Chem. Soc. 2008, 130, 5658



Organocatalysis In a Synthetic Receptor

■ Epoxide opening within Kemp's triacid-derived cavitand in mesitylene-d12

Shenoy, S. R.; Pinacho Crisóstomo, F. R.; Iwasawa, T.; Rebek, J., Jr. J. Am. Chem. Soc. 2008, 130, 5658
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Organocatalysis In a Synthetic Receptor

■ Complexation exposes the epoxide to a local high concentration of the acid

■ CH-π interactions between π-surface of the host and alkyl groups of the guest induced coiling
    leading to TS-like conformations

■ Multiple CH-π interactions with geminal methyl groups @ OH-terminus ⇒ compressed TS giving
    THF products

Shenoy, S. R.; Pinacho Crisóstomo, F. R.; Iwasawa, T.; Rebek, J., Jr. J. Am. Chem. Soc. 2008, 130, 5658
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Conclusions: Self-Assembly Open-Ended Cavitands

■ The resorcinarene-based cavitands are held together by a seam of H-bonding through a
    cyclic array of secondary amides situated on the rim

■ The rim is readily functionalized to incorporated binding sites for substrates with reagent such   
    as Kemp's triacid

■ Accelerates and catalyzes Brønsted acid mediated reactions. Exemplified with regioselective
    opening of 1,5-epoxy alcohols
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Development of Processive Enzyme Mimics using Cavity-Containing Catalysts

■ Processive enzymes: Plays an essential role in DNA synthesis and degradation

■ DNA polymerase operate by threading the biopolymer through the catalyst cavity

■ After threading several rounds of catalysis occurs before the enzyme (catalyst) dissociates



Epoxidation of Stilbene using Mn(III) Porphyrin-Based Hosts

■ Cavity-containing catalyst with porphyrin "roof"

■ Cavity: ca. 9 Å in diameter suitible to complex small aromatic guests

■ Complexed by electrostatic and π−π stacking interactions (Ka = 105-106 M-1, MeCN/CHCl3)
    Ex: Pyridine, Ka = 1.1*105 M-1 (cavity Zn-porphyrin), Ka = 1000 M-1 (Zn-porphyrin)

Elemans, J. A. A. W.; Claase, M. B.; Aarts, P. P. M.; Rowan, A. E.; Schenning, A. P. H. J.; Nolte, R. J. M.
J. Org. Chem. 1999, 64, 7009



Epoxidation of Stilbene using Mn(III) Porphyrin-Based Hosts

■ Pyridine replaced with t-Bu-Pyr: Bulky ligand that coordinates axially on the outside

■ Catalyst decomposition completely supressed 

■ Catalysis occurs inside the cavity with impact on the stereochemistry

■ Rate of trans-stilbene epoxidation twice as high as cis due to sterical hinderance

Elemans, J. A. A. W.; Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R. J. M. Chem. Commun. 2000, 2443

O

cis-Stilbene: 57% (90% cis)
trans-Stilbene: 72% (100% trans)

t-Bu-pyr-Cat
3h



Mn(III) Porphyrin-Based Hosts as Processive Enzyme Mimics

■ Reaction performed in CHCl3 with PhIO as stoichiometric oxidant

■ Polybutadiene (Mw = 300000, >98% cis) used as substrate

■ Polyepoxide product (80% trans), catalyst turnover 140/h (cavity-catalyst)

■ Polyepoxide product (78% cis), Mn(III)-porphyrin referense catalyst

Thordardson, P.; Bijsterveld, E. J. A.; Rowan, A. E.; Nolte, R. J. M. Nature, 2003, 424, 915



Investigation of the Threading Mechanism

■ Polytetrahydrofuran viologen (fluorescence quencher) traps used to investigate the threading
    mechanism

■ Monitoring quenching/time showed: Second-order kinetics for threading and first-order for
    de-threading (fast dilution). Rate decreased when polymer length increased

■ Evidence for threading obtained using MALDI-TOF (1:1 complex), 1H-NMR: -2.29 to -4.25 ppm
    complexation induced shifts for aromatic viologen peaks due to complexation

Coumans, R. G. E.; Elemans, J. A. A. W.; Nolte, R. J. M.; Rowan, A. E. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 19647
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Conclusions: Processive Enzyme Mimics

■ Cavity-containing Mn(III) porphyrin catalyst has been developed for in-cavity epoxidation of
    stilbene by activation using bulky axially-coordinating t-Bu-pyridine ligands

■ Successfully used as a processive enzyme mimic for the epoxidation of polybutadiene by
    threading

■ Extensive elucidation of threading kinetics using fluorescence quenching & MALDI-TOF mass
    spectroscopy & 1H-NMR spectroscopic analysis of host-guest complexes confirms threading
    of only one host



Summary and Outlook: Supramolecular Catalysis Within Self-Assembly Hosts

■ Supramolecular enzymes models are always smaller and simpler than their biological counter-
    parts but it is not necessarily a drawback

■ Using simpler systems can open for the possibility to estimate the relative importance of
    different factor contributing to catalysis

■ Synthetic model are also easily manipulated in a systematic fashion which is more difficult in
    biological systems

■ Encapulation has in recent years lead to the discovery of several unprecedented reaction
    pathways and clearly shows that otherwise unfavored pathways are possible

■ The use of chiral, enantiomerically pure self-assembly hosts is still a largely unexplored area
    which can lead to the development of several new interesting reactions. For example with 
    Fujita's chiral M6L4 complexes

■ The development of more general processive enzyme mimics can open up for the possibility
    of rapid post-polymerization functionalization of polymers and biopolymers


